IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p7155-d1719578.html
   My bibliography  Save this article

Integrating Spatial Autocorrelation and Greenest Images for Dynamic Analysis Urban Heat Islands Based on Google Earth Engine

Author

Listed:
  • Dandan Yan

    (College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China)

  • Yuqing Zhang

    (College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China)

  • Peng Song

    (College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

  • Xiaofang Zhang

    (College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China)

  • Yu Wang

    (College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China)

  • Wenyan Zhu

    (College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China)

  • Qinghui Du

    (College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China)

Abstract

With rapid global urbanization development, impermeable surface increase, urban population growth, building area expansion, and rising energy consumption, the urban heat island (UHI) effect is becoming increasingly serious. However, the spatial distribution of the UHI cannot be accurately extracted. Therefore, we focused on Luoyang City as the research area and combined the Getis-Ord-Gi* statistic and the greenest image to extract the UHI based on the Google Earth Engine using land surface temperature–spatial autocorrelation characteristics and seasonal changes in vegetation. As bare land considerably influenced the UHI extraction results, we combined the greenest image with the initial extraction results and applied the maximum normalized difference vegetation index threshold method to remove this effect on UHI distribution extraction, thereby achieving improved UHI extraction accuracy. Our results showed that the UHI of Luoyang continuously expanded outward, increasing from 361.69 km 2 in 2000 to 912.58 km 2 in 2023, with a continuous expansion rate of 22.95 km 2 /year. Furthermore, the urban area had a higher UHI area growth rate than the county area. Analysis indicates that the UHI effect in Luoyang has increased in parallel with the expansion of the building area. Intensive urban construction is a primary driver of this growth, directly exacerbating the UHI effect. Additionally, rising temperatures, population growth, and gross domestic product accumulation have collectively contributed to the ongoing expansion of this phenomenon. This study provides scientific guidance for future urban planning through the accurate extraction of the UHI effect, which promotes the development of sustainable human settlements.

Suggested Citation

  • Dandan Yan & Yuqing Zhang & Peng Song & Xiaofang Zhang & Yu Wang & Wenyan Zhu & Qinghui Du, 2025. "Integrating Spatial Autocorrelation and Greenest Images for Dynamic Analysis Urban Heat Islands Based on Google Earth Engine," Sustainability, MDPI, vol. 17(15), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:7155-:d:1719578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/7155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/7155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Chen & Anchang Sun & Ruiqing Niu, 2019. "Effect of Land Cover Fractions on Changes in Surface Urban Heat Islands Using Landsat Time-Series Images," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    2. Guilin Liu & Luocheng Zhang & Bin He & Xuan Jin & Qian Zhang & Bam Razafindrabe & Hailin You, 2015. "Temporal changes in extreme high temperature, heat waves and relevant disasters in Nanjing metropolitan region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1415-1430, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew D. Senyshen & Dongmei Chen, 2023. "The Impact of Land Cover Change on Surface Water Temperature of Small Lakes in Eastern Ontario from 1985 to 2020," Land, MDPI, vol. 12(3), pages 1-18, February.
    2. Guangxun Shi & Peng Ye, 2021. "Assessment on Temporal and Spatial Variation Analysis of Extreme Temperature Indices: A Case Study of the Yangtze River Basin," IJERPH, MDPI, vol. 18(20), pages 1-21, October.
    3. Xiaohan Wu & Yongming Xu & Huijuan Chen, 2020. "Study on the Spatial Pattern of an Extreme Heat Event by Remote Sensing: A Case Study of the 2013 Extreme Heat Event in the Yangtze River Delta, China," Sustainability, MDPI, vol. 12(11), pages 1-16, May.
    4. Jingyi Sun & Haidong Li & Ruya Xiao & Guohui Yao & Fengli Zou, 2024. "Dynamics of Heat Island Intensity in a Rapidly Urbanizing Area and the Cooling Effect of Ecological Land: A Case Study in Suzhou, Yangtze River Delta," Sustainability, MDPI, vol. 16(11), pages 1-21, May.
    5. Yanxu Liu & Shuangshuang Li & Yanglin Wang & Tian Zhang & Jian Peng & Tianyi Li, 2015. "Identification of multiple climatic extremes in metropolis: a comparison of Guangzhou and Shenzhen, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 939-953, November.
    6. Maria Ikram & Zhijun Yan & Yan Liu & Dan Wu, 2016. "Assessing the possible impacts of temperature change on air quality and public health in Beijing, 2008–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 153-165, November.
    7. Maria Ikram & Zhijun Yan & Yan Liu & Weihua Qu, 2015. "Seasonal effects of temperature fluctuations on air quality and respiratory disease: a study in Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 833-853, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:7155-:d:1719578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.