IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6887-d1712576.html
   My bibliography  Save this article

Land Consolidation Potential Assessment by Using the Production–Living–Ecological Space Framework in the Guanzhong Plain, China

Author

Listed:
  • Ziyi Xie

    (College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China)

  • Siying Wu

    (College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China)

  • Xin Liu

    (College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China)

  • Hejia Shi

    (College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China)

  • Mintong Hao

    (College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China)

  • Weiwei Zhao

    (College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China)

  • Xin Fu

    (College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China)

  • Yepeng Liu

    (College of Architecture, Xi’an University of Architecture & Technology, Xi’an 710055, China)

Abstract

Land consolidation (LC) is a sustainability-oriented policy tool designed to address land fragmentation, inefficient spatial organization, and ecological degradation in rural areas. This research proposes a Production–Living–Ecological (PLE) spatial utilization efficiency evaluation system, based on an integrated methodological framework combining Principal Component Analysis (PCA), Entropy Weight Method (EWM), Attribute-Weighting Method (AWM), Linear Weighted Sum Method (LWSM), Threshold-Verification Coefficient Method (TVCM), Jenks Natural Breaks (JNB) classification, and the Obstacle Degree Model (ODM). The framework is applied to Qian County, located in the Guanzhong Plain in Shaanxi Province. The results reveal three key findings: (1) PLE efficiency exhibits significant spatial heterogeneity. Production efficiency shows a spatial pattern characterized by high values in the central region that gradually decrease toward the surrounding areas. In contrast, the living efficiency demonstrates higher values in the eastern and western regions, while remaining relatively low in the central area. Moreover, ecological efficiency shows a marked advantage in the northern region, indicating a distinct south–north gradient. (2) Integrated efficiency consolidation potential zones present distinct spatial distributions. Preliminary consolidation zones are primarily located in the western region; priority zones are concentrated in the south; and intensive consolidation zones are clustered in the central and southeastern areas, with sporadic distributions in the west and north. (3) Five primary obstacle factors hinder land use efficiency: intensive utilization of production land (PC1), agricultural land reutilization intensity (PC2), livability of living spaces (PC4), ecological space security (PC7), and ecological space fragmentation (PC8). These findings provide theoretical insights and practical guidance for formulating tar-gated LC strategies, optimizing rural spatial structures, and advancing sustainable development in similar regions.

Suggested Citation

  • Ziyi Xie & Siying Wu & Xin Liu & Hejia Shi & Mintong Hao & Weiwei Zhao & Xin Fu & Yepeng Liu, 2025. "Land Consolidation Potential Assessment by Using the Production–Living–Ecological Space Framework in the Guanzhong Plain, China," Sustainability, MDPI, vol. 17(15), pages 1-34, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6887-:d:1712576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6887/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6887/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Liang & Gen Yang & Xiaojun Zhu & Hua Cheng & Liugen Zheng & Hui Liu & Xianglin Dong & Yanhai Zhang, 2023. "AHP-EWM Based Model Selection System for Subsidence Area Research," Sustainability, MDPI, vol. 15(9), pages 1-24, April.
    2. Libang Ma & Tianmin Tao & Yao Yao & Yawei Li, 2023. "Renovation Potential Evaluation and Type Identification of Rural Idle Residential Land: A Case Study of Yuzhong County, Longzhong Loess Hilly Region, China," Land, MDPI, vol. 12(1), pages 1-21, January.
    3. Mengyuan Su & Xiaoqian Fang & Kaiying Sun & Jiahao Bao & Yu Cao, 2023. "Construction and Optimization of an Ecological Network in the Comprehensive Land Consolidation Project of a Small Rural Town in Southeast China," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    4. Zhifa Jiang & Qiang Li & Wei Gao & Huiyue Su & Yuansuo Zhang, 2023. "Interest Equilibrium and Path Choice in the Development of Construction Land Decrement: A Theoretical Analysis Based on the Multi-Agent Game Model," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    5. Min Xia & Linyan Wang & Bo Wen & Wei Zou & Weixin Ou & Zhongqiong Qu, 2021. "Land Consolidation Zoning in Coastal Tidal Areas Based on Landscape Security Pattern: A Case Study of Dafeng District, Yancheng, Jiangsu Province, China," Land, MDPI, vol. 10(2), pages 1-13, February.
    6. Yu Liu & Fangchen Shi & Hongman He & Liyin Shen & Wenzhu Luo & Lingyun Sun, 2021. "Study on the Matching Degree between Land Resources Carrying Capacity and Industrial Development in Main Cities of Xinjiang, China," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    7. Demetriou, Demetris, 2018. "Automating the land valuation process carried out in land consolidation schemes," Land Use Policy, Elsevier, vol. 75(C), pages 21-32.
    8. Robert M X Wu & Zhongwu Zhang & Wanjun Yan & Jianfeng Fan & Jinwen Gou & Bao Liu & Ergun Gide & Jeffrey Soar & Bo Shen & Syed Fazal-e-Hasan & Zengquan Liu & Peng Zhang & Peilin Wang & Xinxin Cui & Zha, 2022. "A comparative analysis of the principal component analysis and entropy weight methods to establish the indexing measurement," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-26, January.
    9. Han Huang & Yang Zhou & Mingjie Qian & Zhaoqi Zeng, 2021. "Land Use Transition and Driving Forces in Chinese Loess Plateau: A Case Study from Pu County, Shanxi Province," Land, MDPI, vol. 10(1), pages 1-15, January.
    10. Xiaobing Sun & Quanfeng Li & Xiangbin Kong & Weimin Cai & Bailin Zhang & Ming Lei, 2023. "Spatial Characteristics and Obstacle Factors of Cultivated Land Quality in an Intensive Agricultural Region of the North China Plain," Land, MDPI, vol. 12(8), pages 1-23, August.
    11. Schreinemachers, Pepijn & Tipraqsa, Prasnee, 2012. "Agricultural pesticides and land use intensification in high, middle and low income countries," Food Policy, Elsevier, vol. 37(6), pages 616-626.
    12. Jin Li & Yongpeng Ding & Ming Jing & Xiangyu Dong & Jiaxi Zheng & Luoyu Gu, 2024. "Quantitative Change or Qualitative Change: The Impact of Whole-Region Comprehensive Land Consolidation on Cultivated Land Security—Based on Panel Data from Townships in Zhejiang Province," Land, MDPI, vol. 13(12), pages 1-26, December.
    13. Fikret Berkes, 2017. "Environmental Governance for the Anthropocene? Social-Ecological Systems, Resilience, and Collaborative Learning," Sustainability, MDPI, vol. 9(7), pages 1-12, July.
    14. Gang Lin & Dong Jiang & Jingying Fu & Yi Zhao, 2022. "A Review on the Overall Optimization of Production–Living–Ecological Space: Theoretical Basis and Conceptual Framework," Land, MDPI, vol. 11(3), pages 1-15, February.
    15. Jing Zhu & Siqi Ma & Qianyu Zhou, 2022. "Industrial Revitalization of Rural Villages via Comprehensive Land Consolidation: Case Studies in Gansu, China," Land, MDPI, vol. 11(8), pages 1-22, August.
    16. Tianyi Zhao & Yuning Cheng & Yiyang Fan & Xiangnan Fan, 2022. "Functional Tradeoffs and Feature Recognition of Rural Production–Living–Ecological Spaces," Land, MDPI, vol. 11(7), pages 1-27, July.
    17. Bo Hu & Qingsong Ni & Zongfeng Chen & Xueqi Liu & Pingan Liu & Ziyi Yuan, 2025. "Driving Factors of Rural Land-Use Change from a Multi-Scale Perspective: A Case Study of the Loess Plateau in China," Land, MDPI, vol. 14(3), pages 1-18, March.
    18. Ruijie Zhang & Kanhua Yu & Pingping Luo, 2024. "Spatio-Temporal Relationship between Land Use Carbon Emissions and Ecosystem Service Value in Guanzhong, China," Land, MDPI, vol. 13(1), pages 1-21, January.
    19. Pengnan Xiao & Chong Zhao & Yong Zhou & Haoyu Feng & Xigui Li & Jinhui Jiang, 2021. "Study on Land Consolidation Zoning in Hubei Province Based on the Coupling of Neural Network and Cluster Analysis," Land, MDPI, vol. 10(7), pages 1-16, July.
    20. Aiqin Wang & Linxiu Zhang & Yaojiang Shi & Scott Rozelle & Annie Osborn & Meredith Yang, 2017. "Rural Solid Waste Management in China: Status, Problems and Challenges," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    21. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    22. Hao Ye & Yongyong Song & Dongqian Xue, 2022. "Multi-Scenario Simulation of Land Use and Habitat Quality in the Guanzhong Plain Urban Agglomeration, China," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    23. Wei Zhu & Shiguo Gu & Rui Jiang & Xin Zhang & Ryusuke Hatano, 2024. "Saline–Alkali Soil Reclamation Contributes to Soil Health Improvement in China," Agriculture, MDPI, vol. 14(8), pages 1-25, July.
    24. Zhao, Qiang & Yu, Le & Chen, Xin, 2024. "Land system science and its contributions to sustainable development goals: A systematic review," Land Use Policy, Elsevier, vol. 143(C).
    25. Yuyao Zuo & Chaoxian Yang & Guixin Xin & Ya Wu & Rongrong Chen, 2023. "Driving Mechanism of Comprehensive Land Consolidation on Urban–Rural Development Elements Integration," Land, MDPI, vol. 12(11), pages 1-19, November.
    26. Hongping Lian & Yuedong Zhang & Xuezhen Xiong & Wenjing Han, 2025. "Functional Assessment of Rural Counties Under the Production–Living–Ecological Framework: Evidence from Guangdong, China," Land, MDPI, vol. 14(5), pages 1-21, May.
    27. Dongli Zhang & Lihong Yu & Wenxiong Wang, 2022. "Promoting Effect of Whole-Region Comprehensive Land Consolidation on Rural Revitalization from the Perspective of Farm Households: A China Study," Land, MDPI, vol. 11(10), pages 1-24, October.
    28. Fan Wang & Pengtao Zhang & Guijun Zhang & Jiahao Cui, 2023. "Agricultural Land Quality Evaluation and Utilization Zoning Based on the Production–Ecology–Health Dimension: A Case Study of Huanghua City," Land, MDPI, vol. 12(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Wang & Pengtao Zhang & Guijun Zhang & Jiahao Cui, 2023. "Agricultural Land Quality Evaluation and Utilization Zoning Based on the Production–Ecology–Health Dimension: A Case Study of Huanghua City," Land, MDPI, vol. 12(7), pages 1-16, July.
    2. Suizi Wang & Jiangwen Fan & Haiyan Zhang & Yaxian Zhang & Huajun Fang, 2023. "Harmonizing Population, Grain, and Land: Unlocking Sustainable Land Resource Management in the Farming–Pastoral Ecotone," Land, MDPI, vol. 12(7), pages 1-14, June.
    3. Per Angelstam & Terrence Bush & Michael Manton, 2023. "Challenges and Solutions for Forest Biodiversity Conservation in Sweden: Assessment of Policy, Implementation Outputs, and Consequences," Land, MDPI, vol. 12(5), pages 1-58, May.
    4. Man Yuan & Jianxin Yang & Jian Gong & Yingge Wang & Lizhou Wang & Yajing Sun, 2024. "Strategies for Enhancing Rural Vitality from the Perspective of Comprehensive Land Consolidation: Integrating Production, Living, Ecology, and Efficiency Enhancement," Land, MDPI, vol. 13(12), pages 1-25, December.
    5. Przemysław Leń & Michał Maciąg & Klaudia Maciąg, 2023. "Design of an Automated Algorithm for Delimiting Land Use/Soil Valuation Classes as a Tool Supporting Data Processing in the Land Consolidation Procedure," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    6. Xinyan Wu & Jinmei Ding & Bingjie Lu & Yuanyuan Wan & Linna Shi & Qi Wen, 2022. "Eco-Environmental Effects of Changes in Territorial Spatial Pattern and Their Driving Forces in Qinghai, China (1980–2020)," Land, MDPI, vol. 11(10), pages 1-20, October.
    7. Yaoben Lin & Danling Chen, 2022. "Functional Zoning and Path Selection of Land Comprehensive Consolidation Based on Grey Constellation Clustering: A Case Study of Dongying City, China," IJERPH, MDPI, vol. 19(11), pages 1-16, May.
    8. Huiyuan Guan & Yongping Bai & Chunyue Zhang, 2022. "Research on Ecosystem Security and Restoration Pattern of Urban Agglomeration in the Yellow River Basin," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    9. Filipa Correia & Philipp Erfruth & Julie Bryhn, 2018. "The 2030 Agenda: The roadmap to GlobALLizaton," Working Papers 156, United Nations, Department of Economics and Social Affairs.
    10. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    11. Hervé Corvellec & Johan Hultman & Anne Jerneck & Susanne Arvidsson & Johan Ekroos & Niklas Wahlberg & Timothy W. Luke, 2021. "Resourcification: A non‐essentialist theory of resources for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1249-1256, November.
    12. Tetsuya Tsurumi & Shunsuke Managi, 2025. "Income and Subjective Well-Being: The Importance of Index Choice for Sustainable Economic Development," Sustainability, MDPI, vol. 17(12), pages 1-32, June.
    13. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    14. Mikko Kurenlahti & Arto O. Salonen, 2018. "Rethinking Consumerism from the Perspective of Religion," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    15. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    16. Janet Judy McIntyre‐Mills, 2013. "Anthropocentrism and Well‐being: A Way Out of the Lobster Pot?," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(2), pages 136-155, March.
    17. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).
    18. Tezcan, Ahmet & Büyüktaş, Kenan & Akkaya Aslan, Şerife Tülin, 2020. "A multi-criteria model for land valuation in the land consolidation," Land Use Policy, Elsevier, vol. 95(C).
    19. Ronja Teschner & Jessica Ruppen & Basil Bornemann & Rony Emmenegger & Lucía Aguirre Sánchez, 2021. "Mapping Sustainable Diets: A Comparison of Sustainability References in Dietary Guidelines of Swiss Food Governance Actors," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    20. Barbara Predan & Petra Černe Oven, 2023. "Developing a Pedagogical Approach with the Aim of Empowering Educators and Students to Address Emerging Global Issues such as Climate Change and Social Justice: A Case Study," Sustainability, MDPI, vol. 15(24), pages 1-22, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6887-:d:1712576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.