IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i15p6817-d1711058.html
   My bibliography  Save this article

Assessing Two Decades of Organic Farming: Effects on Soil Heavy Metal Concentrations and Biodiversity for Sustainable Management

Author

Listed:
  • Yizhi Chen

    (International Curriculum Centre, Renmin University of China, Beijing 100872, China)

  • Jianning Guo

    (International Curriculum Centre, Renmin University of China, Beijing 100872, China)

  • Hanyue Zhao

    (International Curriculum Centre, Renmin University of China, Beijing 100872, China)

  • Guangyu Qu

    (School of Environmental, Tsinghua University, Beijing 100084, China)

  • Siqi Han

    (School of Environmental, Tsinghua University, Beijing 100084, China)

  • Caide Huang

    (School of Environmental, Tsinghua University, Beijing 100084, China)

Abstract

Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional farming systems. A comparative analysis was conducted on 24 plot soils from two paired organic and conventional farm systems in Beijing, each managed continuously for over 20 years. Our results revealed that soils under organic management consistently contained 10.8% to 73.7% lower heavy metals, along with reduced geo-accumulation indices ( I geo , a standardized metric for soil contamination assessment), indicating decreased contamination risks. In terms of soil fauna, while conventional soils showed higher Collembola abundance, organic farming significantly enhanced Collembola richness and diversity by 20.6% to 55.0%. Microbial sequencing likewise revealed enhanced richness and diversity of bacteria and fungi in organic soils. These microbial communities also displayed shifts in dominant taxa and more stable co-occurrence networks under organic management. Principal component analysis and Mantel tests identified soil pH and nutrients as key drivers of soil biodiversity, while heavy metals also imposed negative influences. Collectively, these findings demonstrate that long-term organic farming not only mitigates environmental risks associated with soil contaminants but also promotes belowground ecological integrity by supporting biodiversity of soil fauna and microbiota. This study highlights the ecological significance of sustained organic practices and provides critical insights for advancing sustainable agricultural developments.

Suggested Citation

  • Yizhi Chen & Jianning Guo & Hanyue Zhao & Guangyu Qu & Siqi Han & Caide Huang, 2025. "Assessing Two Decades of Organic Farming: Effects on Soil Heavy Metal Concentrations and Biodiversity for Sustainable Management," Sustainability, MDPI, vol. 17(15), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6817-:d:1711058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/15/6817/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/15/6817/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy E. Crews & Douglas J. Cattani, 2018. "Strategies, Advances, and Challenges in Breeding Perennial Grain Crops," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    2. Io Carydi & Athanasios Koutsianas & Marios Desyllas, 2023. "People, Crops, and Bee Farming: Landscape Models for a Symbiotic Network in Greece," Land, MDPI, vol. 12(2), pages 1-25, February.
    3. Danilo Đokić & Bojan Matkovski & Marija Jeremić & Ivan Đurić, 2022. "Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans," Land, MDPI, vol. 11(12), pages 1-13, December.
    4. Marco Bascietto & Enrico Santangelo & Claudio Beni, 2021. "Spatial Variations of Vegetation Index from Remote Sensing Linked to Soil Colloidal Status," Land, MDPI, vol. 10(1), pages 1-15, January.
    5. Shukla, Sumedha & Arora, Gaurav, 2023. "Soil quality perceptions: Characterizing bias and linkage with farming decisions for rice- growers in India," 2023 Annual Meeting, July 23-25, Washington D.C. 336014, Agricultural and Applied Economics Association.
    6. Felicia Cheţan & Teodor Rusu & Cornel Cheţan & Camelia Urdă & Raluca Rezi & Alina Şimon & Ileana Bogdan, 2022. "Influence of Soil Tillage Systems on the Yield and Weeds Infestation in the Soybean Crop," Land, MDPI, vol. 11(10), pages 1-13, October.
    7. Hinge, Gilbert & Surampalli, Rao Y. & Goyal, Manish Kumar & Gupta, Brij B. & Chang, Xiaojun, 2021. "Soil carbon and its associate resilience using big data analytics: For food Security and environmental management," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    8. Matthias Senft & Ulrike Stahl & Nikolai Svoboda, 2022. "Research data management in agricultural sciences in Germany: We are not yet where we want to be," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-19, September.
    9. Xiuwen Fang & Yue Sun & Xiangxiang Huang & Bo Pan & Haiying Gao & Zhishui Liang, 2025. "Effects of Three Fertilizers on Improving Soil Characteristics and Growth Performance of Mahonia fortunei (Lindl.) Fedde in Rocky Desertification Areas," Land, MDPI, vol. 14(5), pages 1-19, May.
    10. Al Mamun, Mohammad Abdullah & Garba, Ismail Ibrahim & Campbell, Shane & Dargusch, Paul & deVoil, Peter & Aziz, Ammar Abdul, 2023. "Biomass production of a sub-tropical grass under different photovoltaic installations using different grazing strategies," Agricultural Systems, Elsevier, vol. 208(C).
    11. Alondra María Díaz-Rodríguez & Claire Kelly & Alfredo del Valle & Claudio Bravo-Linares & William Blake & Hugo Velasco & Roberto Meigikos dos Anjos & Laura Fernanda Barrera-Hernández & Sergio de los S, 2021. "Exploring Relationship between Perception Indicators and Mitigation Behaviors of Soil Erosion in Undergraduate Students in Sonora, Mexico," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    12. Zhou, Yang & Li, Peixuan & Zhang, Qi & Cheng, Guoqiang, 2025. "Socio-economic impacts, challenges, and strategies for whole-region comprehensive land consolidation in China," Land Use Policy, Elsevier, vol. 150(C).
    13. Sanjib Kumar Behera & Viacheslav I. Adamchuk & Arvind Kumar Shukla & Punyavrat Suvimalendu Pandey & Pardeep Kumar & Vimal Shukla & Chitdeshwari Thiyagarajan & Hitendra Kumar Rai & Sandeep Hadole & Ani, 2022. "The Scope for Using Proximal Soil Sensing by the Farmers of India," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    14. Xinhai Lu & Yanwei Zhang & Chaoran Lin & Feng Wu, 2021. "Evolutionary Overview and Prediction of Themes in the Field of Land Degradation," Land, MDPI, vol. 10(3), pages 1-23, March.
    15. Denis-Constantin Țopa & Sorin Căpșună & Anca-Elena Calistru & Costică Ailincăi, 2025. "Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review," Agriculture, MDPI, vol. 15(9), pages 1-38, May.
    16. Pratiwi & Budi Hadi Narendra & Chairil Anwar Siregar & Iskandar & Budi Mulyanto & Suwardi & Dyah Tjahyandari Suryaningtyas & I Wayan Susi Dharmawan & Sri Suharti & Fenky Marsandi, 2025. "Tin Mining and Post-Tin Mining Reclamation Initiatives in Indonesia: With Special Reference to Bangka Belitung Areas," Land, MDPI, vol. 14(10), pages 1-32, September.
    17. Alicja Krzemińska & Anna Zaręba & Mariusz Adynkiewicz-Piragas & Haifeng Jia & María Guadalupe Alpuche Cruz & Luis Antonio Valle Cordero, 2025. "Underground Food Farms as a Climate-Friendly Alternative Form of Urban Agriculture," Sustainability, MDPI, vol. 17(21), pages 1-29, October.
    18. Abdallah Alaoui & Lúcia Barão & Carla S. S. Ferreira & Rudi Hessel, 2022. "An Overview of Sustainability Assessment Frameworks in Agriculture," Land, MDPI, vol. 11(4), pages 1-26, April.
    19. Mirosław Wyszkowski & Natalia Kordala & Marzena S. Brodowska, 2023. "Trace Element Content in Soils with Nitrogen Fertilisation and Humic Acids Addition," Agriculture, MDPI, vol. 13(5), pages 1-13, April.
    20. Ioannis Gazoulis & Konstantina Pyliou & Metaxia Kokkini & Marios Danaskos & Panagiotis Kanatas & Ilias Travlos, 2025. "Cup Plant ( Silphium perfoliatum ): Agronomy, Uses, and Potential Role for Land Restoration," Land, MDPI, vol. 14(6), pages 1-14, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:15:p:6817-:d:1711058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.