IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i14p6615-d1705542.html
   My bibliography  Save this article

Optimization of Joint Distribution Routes for Automotive Parts Considering Multi-Manufacturer Collaboration

Author

Listed:
  • Lingsan Dong

    (School of Management, Harbin Institute of Technology, Harbin 150001, China)

  • Jian Wang

    (School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Xiaowei Hu

    (School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

The swift expansion of China’s automotive manufacturing industry has spurred a constant rise in the demand for automotive parts production and distribution, making the optimization of distribution routes in complex environments a crucial research topic. Efficiently optimizing these routes not only boosts production efficiency and cuts costs for automotive manufacturers but also enhances supply chain management and advances sustainable development. This study focuses on the optimization of automotive parts distribution routes under a multi-manufacturer collaboration framework. An optimization model is proposed to minimize the total operational costs within a joint distribution system, incorporating an improved Ant Colony Optimization (ACO) algorithm to formulate an effective solution approach. The model considers complex factors such as dynamic demand, time-window constraints, and periodic distribution. A PIVNS algorithm integrating a virtual distribution center with an enhanced variable neighborhood search is designed to efficiently address the problem. The efficacy of the proposed model and algorithm is substantiated through extensive experiments grounded in real-world case studies. The results confirm the high computational efficiency of the proposed approach in solving large-scale problems, which significantly reduces distribution costs while improving overall supply chain performance. Specifically, the PIVNS algorithm achieves an average travel distance of 2020.85 km, an average runtime of 112.25 s, a total transportation cost of CNY 12,497.99, and a loading rate of 86.775%. These findings collectively highlight the advantages of the proposed method in enhancing efficiency, reducing costs, and optimizing resource utilization. Overall, this study provides valuable insights for logistics optimization in automotive manufacturing and offers a significant reference for future research and practical applications in the field.

Suggested Citation

  • Lingsan Dong & Jian Wang & Xiaowei Hu, 2025. "Optimization of Joint Distribution Routes for Automotive Parts Considering Multi-Manufacturer Collaboration," Sustainability, MDPI, vol. 17(14), pages 1-30, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6615-:d:1705542
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/14/6615/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/14/6615/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Desrosiers, Jacques & Soumis, Francois & Desrochers, Martin & SauveGerad, Michel, 1986. "Methods for routing with time windows," European Journal of Operational Research, Elsevier, vol. 23(2), pages 236-245, February.
    2. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    3. Alejandro Arenas-Vasco & Juan Carlos Rivera & Maria Gulnara Baldoquín, 2024. "Effect of formulations over a Periodic Capacitated Vehicle Routing Problem with multiple depots, heterogeneous fleet, and hard time-windows," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Débora P. Ronconi & João L. V. Manguino, 2025. "GRASP and VNS approaches for a vehicle routing problem with step cost functions," Annals of Operations Research, Springer, vol. 350(1), pages 37-62, July.
    2. Yi-Kuei Lin & Cheng-Fu Huang & Yi-Chieh Liao, 2019. "Reliability of a stochastic intermodal logistics network under spoilage and time considerations," Annals of Operations Research, Springer, vol. 277(1), pages 95-118, June.
    3. Filippo Focacci & Andrea Lodi & Michela Milano, 2002. "A Hybrid Exact Algorithm for the TSPTW," INFORMS Journal on Computing, INFORMS, vol. 14(4), pages 403-417, November.
    4. Zhang, Ying & Qi, Mingyao & Miao, Lixin & Liu, Erchao, 2014. "Hybrid metaheuristic solutions to inventory location routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 305-323.
    5. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    6. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    7. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    8. Yiling Li & Zhiwen Yang & Si Zhang & Wenting Liu, 2024. "A Study of the Capacitated Vehicle Routing Problem with Time-Window and Three-Dimensional Loading Constraints in Land–Sea Transport," Sustainability, MDPI, vol. 16(23), pages 1-26, November.
    9. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    10. Tingxin Wen & Haoting Meng, 2025. "Time-Dependent Multi-Center Semi-Open Heterogeneous Fleet Path Optimization and Charging Strategy," Mathematics, MDPI, vol. 13(7), pages 1-27, March.
    11. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    12. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.
    13. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    14. Luigi Di Puglia Pugliese & Francesca Guerriero & Maria Grazia Scutellá, 2021. "The Last-Mile Delivery Process with Trucks and Drones Under Uncertain Energy Consumption," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 31-67, October.
    15. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    16. Sanjeeb Dash & Oktay Günlük & Andrea Lodi & Andrea Tramontani, 2012. "A Time Bucket Formulation for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 132-147, February.
    17. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    18. Wang, Yong & Wei, Zikai & Luo, Siyu & Zhou, Jingxin & Zhen, Lu, 2024. "Collaboration and resource sharing in the multidepot time-dependent vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    19. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    20. Luca Maria Gambardella & Marco Dorigo, 2000. "An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 237-255, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6615-:d:1705542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.