Author
Listed:
- Mohammed A. Albadrani
(Department of Mechanical Engineering, College of Engineering, Qassim University, Buraydah 51452, Saudi Arabia)
Abstract
This paper examines how artificial intelligence (AI) can be strategically deployed to enhance urban planning and environmental livability in Riyadh by generating data-driven, people-centric design interventions. Unlike previous studies that concentrate primarily on visualization, this research proposes an integrative appraisal framework that combines AI-generated design with site-specific environmental data and native vegetation typologies. This study was conducted across key jurisdictional areas including the Northern Ring Road, King Abdullah Road, Al Rabwa, Al-Malaz, Al-Suwaidi, Al-Batha, and King Fahd Road. Using AI tools, urban scenarios were developed to incorporate expanded pedestrian pathways (up to 3.5 m), dedicated bicycle lanes (up to 3.0 m), and ecologically adaptive green buffer zones featuring native drought-resistant species such as Date Palm , Acacia , and Sidr . The quantitative analysis of post-intervention outcomes revealed surface temperature reductions of 3.2–4.5 °C and significant improvements in urban esthetics, walkability, and perceived safety—measured on a five-point Likert scale with 80–100% increases in user satisfaction. Species selection was validated for ecological adaptability, minimal maintenance needs, and compatibility with Riyadh’s sandy soils. This study directly supports the Kingdom of Saudi Arabia’s Vision 2030 by demonstrating how emerging technologies like AI can drive smart, sustainable urban transformation. It aligns with Vision 2030’s urban development goals under the Quality-of-Life Program and environmental sustainability pillar, promoting healthier, more connected cities with elevated livability standards. The research not only delivers practical design recommendations for planners seeking to embed sustainability and digital innovation in Saudi urbanism but also addresses real-world constraints such as budgetary limitations and infrastructure integration.
Suggested Citation
Mohammed A. Albadrani, 2025.
"Enriching Urban Life with AI and Uncovering Creative Solutions: Enhancing Livability in Saudi Cities,"
Sustainability, MDPI, vol. 17(14), pages 1-18, July.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:14:p:6603-:d:1705414
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6603-:d:1705414. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.