Author
Listed:
- Rui Wang
(School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China)
- Longpeng Cong
(School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China)
- Ying Sun
(School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China)
- Xiaotian Bai
(School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China)
Abstract
As global climate change intensifies, extreme climate events are becoming more frequent, presenting significant challenges to socioeconomic systems and ecosystems. Northeast China, a region highly sensitive to climate change, has been profoundly impacted by compound drought and heat extremes (CDHEs), affecting agriculture, society, and the economy. To evaluate the characteristics and evolution of summer CDHEs in this region, this study analyzed observational data from 81 meteorological stations (1961–2020) and developed a Standardized Temperature–Precipitation Index (STPI) using the Copula joint probability method. The STPI’s effectiveness in characterizing compound drought and heat conditions was validated against historical records. Using the constructed STPI, this study conducted a comprehensive analysis of the spatiotemporal distribution of CDHEs. The Theil–Sen median trend analysis, Mann–Kendall trend tests, and the frequency of CDHEs were employed to examine drought and heatwave patterns and their influence on compound events. The findings demonstrated an increase in the severity of compound drought and heat events over time. Although the STPI exhibited a slight interannual decline, its values remained above −2.0, indicating the continued intensification of these events in the study area. Most of the stations showed a non-significant decline in the Standardized Precipitation Index and a significant rise in the Standardized Temperature Index, indicating that rising temperatures primarily drive the increasing severity of compound drought and heat events. The 1990s marked a turning point with a significant increase in the frequency, severity, and spatial extent of these events.
Suggested Citation
Rui Wang & Longpeng Cong & Ying Sun & Xiaotian Bai, 2025.
"Variability of Summer Drought and Heatwave Events in Northeast China,"
Sustainability, MDPI, vol. 17(14), pages 1-24, July.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:14:p:6569-:d:1704705
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6569-:d:1704705. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.