Author
Listed:
- Zhengyuan Qi
(College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China)
- Jun Wang
(College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China)
- Guang Yang
(College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China)
- Yanlong Wang
(College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China)
Abstract
Efficient weed detection in dryland spring wheat fields is crucial for sustainable agriculture, as it enables targeted interventions that reduce herbicide use, minimize environmental impact, and optimize resource allocation in water-limited farming systems. This paper presents HSG-Net, a novel lightweight object detection model based on YOLOv8 for weed identification in dryland spring wheat fields. The proposed architecture integrates three key innovations: an HGNetv2 backbone for efficient feature extraction, C2f-S modules with star-shaped attention mechanisms for enhanced feature representation, and Group Head detection heads for parameter-efficient prediction. Experiments on a dataset of eight common weed species in dryland spring wheat fields show that HSG-Net improves detection accuracy while cutting computational costs, outperforming modern deep learning approaches. The model effectively addresses the unique challenges of weed detection in dryland agriculture, including visual similarity between crops and weeds, variable illumination conditions, and complex backgrounds. Ablation studies confirm the complementary contributions of each architectural component, with the full HSG-Net model achieving an optimal balance between accuracy and resource efficiency. The lightweight nature of HSG-Net makes it particularly suitable for deployment on resource-constrained devices used in precision agriculture, enabling real-time weed detection and targeted intervention in field conditions. This work represents an important advancement in developing practical deep learning solutions for sustainable weed management in dryland farming systems.
Suggested Citation
Zhengyuan Qi & Jun Wang & Guang Yang & Yanlong Wang, 2025.
"Lightweight YOLOv8-Based Model for Weed Detection in Dryland Spring Wheat Fields,"
Sustainability, MDPI, vol. 17(13), pages 1-22, July.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:13:p:6150-:d:1694817
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:6150-:d:1694817. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.