IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5983-d1690507.html
   My bibliography  Save this article

Microstructure and Mechanical Properties of Sustainable Concrete Incorporating Used Foundry Sand and Coal Bottom Ash

Author

Listed:
  • Piotr Smarzewski

    (Faculty of Civil Engineering and Geodesy, Military University of Technology, 2 Gen. Sylwestra Kaliskiego, 00-908 Warsaw, Poland)

Abstract

This study investigates the potential for sustainable concrete production using industrial by-products: used foundry sand (UFS) and coal bottom ash (CBA). These materials were partially substituted for natural aggregates to reduce environmental impact and promote circular economy practices. UFS was used as a replacement for fine aggregate, while both fine and coarse CBA were tested as substitutes for sand and gravel, respectively. The materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) to evaluate their mineralogical and microstructural properties. Six concrete mixtures were prepared with varying replacement levels (up to 70% total aggregate substitution) at a constant water-to-cement ratio of 0.50. Compressive strength tests were conducted at 28 days, supported by microstructural observations. Results showed that high levels of UFS and CBA led to reduced strength, mainly due to weak interfacial bonding and porous ash particles. However, moderate replacement levels (e.g., 20% fine CBA) maintained high strength with good structural integrity. The study concludes that both UFS and CBA can be used effectively in concrete when carefully dosed. The findings support the use of industrial waste in construction, provided that material properties are well understood and replacement levels are optimized.

Suggested Citation

  • Piotr Smarzewski, 2025. "Microstructure and Mechanical Properties of Sustainable Concrete Incorporating Used Foundry Sand and Coal Bottom Ash," Sustainability, MDPI, vol. 17(13), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5983-:d:1690507
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5983/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5983-:d:1690507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.