Author
Listed:
- Lishan Rong
(School of Civil Engineering, University of South China, Hengyang 421001, China)
- Yanyi Zhou
(School of Civil Engineering, University of South China, Hengyang 421001, China)
- He Li
(State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)
- Chong Huang
(State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)
Abstract
The coastline of the Yellow River Delta in China has experienced significant dynamic changes due to both natural and human activities. Investigating its coastal dynamics and understanding the equilibrium with riverine runoff and sediment discharge is crucial for ecological balance and sustainable development in the region. In this study, a coastline extraction algorithm was developed by integrating water index and dynamic frequency thresholds based on the Google Earth Engine platform. Long-term optical remote sensing datasets from Landsat (1988–2016) and Sentinel-2 (2017–2023) were utilized. The End Point Rate (EPR) and Linear Regression Rate (LRR) methods were employed to quantify coastline changes, and the relationship between coastal evolution and runoff–sediment dynamics was investigated. The results revealed the following: (1) The coastline of the Yellow River Delta exhibits pronounced spatiotemporal variability. From 1988 to 2023, the Diaokou estuary recorded the lowest EPR and LRR values (−206.05 m/a and −248.33 m/a, respectively), whereas the Beicha estuary recorded the highest values (317.54 m/a and 374.14 m/a, respectively). (2) The cumulative land area change displayed a fluctuating pattern, characterized by a general trend of increase–decrease–increase, indicating a gradual progression toward dynamic equilibrium. The Diaokou estuary has been predominantly erosional, while the Qingshuigou estuary experienced deposition prior to 1996, followed by subsequent erosion. In contrast, the land area of the Beicha estuary has continued to increase since 1997. (3) Deltaic progradation has been primarily governed by runoff–sediment dynamics. Coastline advancement has occurred along active river channels as a result of sediment deposition, whereas former river mouths have retreated landward due to insufficient fluvial sediment input. In the Beicha estuary, increased land area has exhibited a strong positive correlation with annual sedimentary influx. The critical sediment discharge required to maintain equilibrium has been estimated at 79 million t/a for the Beicha estuary and 107 million t/a for the entire deltaic region. These findings provide a scientific foundation for sustainable sediment management, coastal restoration, and integrated land–water planning. This study supports sustainable coastal management, informs policymaking, and enhances ecosystem resilience.
Suggested Citation
Lishan Rong & Yanyi Zhou & He Li & Chong Huang, 2025.
"Sustainable Coastal Evolution and Critical Sediment Load Estimation in the Yellow River Delta,"
Sustainability, MDPI, vol. 17(13), pages 1-17, June.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:13:p:5943-:d:1689404
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5943-:d:1689404. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.