IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5436-d1677799.html
   My bibliography  Save this article

Ecological Resilience Assessment and Scenario Simulation Considering Habitat Suitability, Landscape Connectivity, and Landscape Diversity

Author

Listed:
  • Fei Liu

    (College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Hong Huang

    (College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Fangsen Lei

    (College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Ning Liang

    (College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Longxi Cao

    (College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China)

Abstract

Quantitative assessment of ecological resilience is crucial for understanding regional ecological security and provides a scientific basis for ecosystem protection and management decisions. Previous studies on ecological resilience evaluation predominantly focused on ecosystem resistance and recovery capacity under external threats. To address this gap, we propose an innovative assessment framework integrating landscape internal structure indicators—habitat suitability (HS), landscape connectivity (SHDI), and landscape diversity (LCI)—into the resilience paradigm. This approach enables the adjustment of landscape patterns, optimization of energy/material flows, and direct enhancement of ecosystem functions to improve regional ecological resilience. Using the ecological barrier area in northern Qinghai as a case study, we employed geographic grid technology to evaluate ecological resilience levels from 2000 to 2020. Combined with geological disaster risk assessment, ecological regionalization was established. The FLUS model was then applied to simulate land use changes under inertia development (ID) and ecological protection (EP) scenarios, projecting future ecological resilience dynamics. Key findings specific to the study area include: (1) In northern Qinghai, grassland degradation was prominent (2000–2020), primarily converting to barren land. (2) Landscape connectivity and diversity declined, leading to a 6% reduction in ecological resilience over twenty years. (3) Based on ecological resilience and geological disaster risk, three ecological management zones were delineated: prevention and protection areas (40.94%), key supervision areas (38.77%), and key ecological restoration areas (20.09%). (4) Compared with 2020, ecological resilience in 2030 decreased by 23.38% under the ID scenario and 14.28% under the EP scenario. The EP scenario effectively mitigated the decline of resilience. This study offers a novel perspective for ecological resilience assessment and supports spatial optimization of land resources to enhance ecosystem sustainability in ecologically vulnerable regions.

Suggested Citation

  • Fei Liu & Hong Huang & Fangsen Lei & Ning Liang & Longxi Cao, 2025. "Ecological Resilience Assessment and Scenario Simulation Considering Habitat Suitability, Landscape Connectivity, and Landscape Diversity," Sustainability, MDPI, vol. 17(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5436-:d:1677799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhimin Liu & Chunliang Xiu & Wei Song, 2019. "Landscape-Based Assessment of Urban Resilience and Its Evolution: A Case Study of the Central City of Shenyang," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    2. Yangbiao Li & Chen Zeng & Zhixin Liu & Bingqian Cai & Yang Zhang, 2022. "Integrating Landscape Pattern into Characterising and Optimising Ecosystem Services for Regional Sustainable Development," Land, MDPI, vol. 11(1), pages 1-17, January.
    3. Divya Saini & Omvir Singh & Tejpal Sharma & Pankaj Bhardwaj, 2022. "Geoinformatics and analytic hierarchy process based drought vulnerability assessment over a dryland ecosystem of north-western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1427-1454, November.
    4. Ze Han & Wei Song & Xiangzheng Deng, 2016. "Responses of Ecosystem Service to Land Use Change in Qinghai Province," Energies, MDPI, vol. 9(4), pages 1-16, April.
    5. Yu Chen & Xuyang Su & Qian Zhou, 2021. "Study on the Spatiotemporal Evolution and Influencing Factors of Urban Resilience in the Yellow River Basin," IJERPH, MDPI, vol. 18(19), pages 1-20, September.
    6. Xiaotong You & Yanan Sun & Jiawei Liu, 2022. "Evolution and analysis of urban resilience and its influencing factors: a case study of Jiangsu Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1751-1782, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaiping Jiang & Kaichao Li & Nan Cong & Siyu Wu & Fei Peng, 2023. "Spatial-Temporal Variation Characteristics and Obstacle Factors of Resilience in Border Cities of Northeast China," Land, MDPI, vol. 12(5), pages 1-19, April.
    2. Ying Zhang & Yunyan Li, 2024. "A Study on the Coupling Coordination of Urban Resilience and the Tourism Economy in the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 16(12), pages 1-20, June.
    3. Xinmin Zhang & Hualin Xie & Jiaying Shi & Tiangui Lv & Caihua Zhou & Wangda Liu, 2020. "Assessing Changes in Ecosystem Service Values in Response to Land Cover Dynamics in Jiangxi Province, China," IJERPH, MDPI, vol. 17(9), pages 1-15, April.
    4. Peng Wu & Qingxia Duan & Ligang Zhou & Qun Wu & Muhammet Deveci, 2025. "Spatial-temporal evaluation of urban resilience in the Yangtze River Delta from the perspective of the coupling coordination degree," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 409-431, January.
    5. Jie Huang & Zimin Sun & Minzhe Du, 2022. "Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China," Land, MDPI, vol. 11(9), pages 1-18, September.
    6. Liudan Jiao & Bowei Han & Qilin Tan & Yu Zhang & Xiaosen Huo & Liu Wu & Ya Wu, 2024. "An Improved DPSIR-DEA Assessment Model for Urban Resilience: A Case Study of 105 Large Cities in China," Land, MDPI, vol. 13(8), pages 1-23, July.
    7. Guiling Wang & Mengzhuo Zhang & Yimeng Liu & Li Zhou & Yuxin Xia, 2023. "The Green and Adaptable Development Paths of Provincial Characteristic Towns in Taihu Lake Basin: A Synergy Perspective on Face Value and Resilience," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    8. Maomao Zhang & Weigang Chen & Kui Cai & Xin Gao & Xuesong Zhang & Jinxiang Liu & Zhiyuan Wang & Deshou Li, 2019. "Analysis of the Spatial Distribution Characteristics of Urban Resilience and Its Influencing Factors: A Case Study of 56 Cities in China," IJERPH, MDPI, vol. 16(22), pages 1-22, November.
    9. Mei Yang & Mengyun Jiao & Jinyu Zhang, 2022. "Research on Urban Resilience and Influencing Factors of Chengdu-Chongqing Economic Circle," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    10. Hao Su & Shuo Yang, 2022. "Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    11. Sai Hu & Longqian Chen & Long Li & Bingyi Wang & Lina Yuan & Liang Cheng & Ziqi Yu & Ting Zhang, 2019. "Spatiotemporal Dynamics of Ecosystem Service Value Determined by Land-Use Changes in the Urbanization of Anhui Province, China," IJERPH, MDPI, vol. 16(24), pages 1-18, December.
    12. Liangang Li & Pingyu Zhang & Chengxin Wang, 2022. "What Affects the Economic Resilience of China’s Yellow River Basin Amid Economic Crisis—From the Perspective of Spatial Heterogeneity," IJERPH, MDPI, vol. 19(15), pages 1-20, July.
    13. Damien Sinonmatohou Tiando & Shougeng Hu & Xin Fan & Muhammad Rashid Ali, 2021. "Tropical Coastal Land-Use and Land Cover Changes Impact on Ecosystem Service Value during Rapid Urbanization of Benin, West Africa," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    14. Junnan Xiong & Chongchong Ye & Weiming Cheng & Liang Guo & Chenghu Zhou & Xiaolei Zhang, 2019. "The Spatiotemporal Distribution of Flash Floods and Analysis of Partition Driving Forces in Yunnan Province," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    15. Xiaojia Guo & Jinqiang Li & Yanjie Ma & Xingpeng Chen & Ya Li, 2023. "Study on the Coupling and Coordination between Urban Resilience and Low-Carbon Development of Central Plains Urban Agglomeration," Sustainability, MDPI, vol. 15(24), pages 1-25, December.
    16. Li, Shicheng & Zhang, Yili & Wang, Zhaofeng & Li, Lanhui, 2018. "Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions," Ecosystem Services, Elsevier, vol. 30(PB), pages 276-286.
    17. Yangfan Zhou & Lijie Pu & Ming Zhu, 2020. "Coastal Landscape Vulnerability Analysis in Eastern China—Based on Land-Use Change in Jiangsu Province," IJERPH, MDPI, vol. 17(5), pages 1-18, March.
    18. Yang Ban & Ying Wang & Xiaohong Chen & Liuqing Wei, 2022. "Synergistic Patterns of Urban Economic Efficiency and the Economic Resilience of the Harbin–Changchun Urban Agglomeration in China," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    19. Tingting Yang & Lin Wang, 2024. "Did Urban Resilience Improve during 2005–2021? Evidence from 31 Chinese Provinces," Land, MDPI, vol. 13(3), pages 1-22, March.
    20. Jie Liu & Xinyu Wang & Gongjing Gao, 2025. "Spatiotemporal Evolution and Determinants of Urban Flood Resilience: A Case Study of Yellow River Basin," Sustainability, MDPI, vol. 17(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5436-:d:1677799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.