IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5382-d1676493.html
   My bibliography  Save this article

The Spatial Correlation Network of China’s Urban Digital Economy and Its Formation Mechanism

Author

Listed:
  • Jing Huang

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Kai Liu

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

Abstract

Based on digital patent data from 359 Chinese cities between 2006 and 2022, this paper calculates the gravitational value of the digital economy using a modified gravity model and employs social network analysis and QAP analysis to investigate the correlation network of cities’ digital economy and the influencing factors. The study found the following: (1) Chinese cities have a high level of digital economy, showing a consistent increase in growth rate, and density and relevance are rising without revealing a distinct hierarchical network structure. (2) The inner economic network demonstrates a significant imbalance, as illustrated by the “Matthew effect”. Core cities like Shenzhen and Beijing show greater net spillover, indicating their role as network hubs, while less developed cities have lower net spillover, necessitating improvements in interconnection capacity. (3) Differences in economic scale, population quality, scientific and technological innovation, and infrastructure construction, which have a positive effect, are the main sources of linkage network formation. At the same time, the difference in urbanization rates is stage-specific, reflecting the dual logic of factor complementarity and policy synergy. Overall, this study reveals the dynamic evolution of the digital economic spatial network through city-scale innovation and provides theoretical support for promoting the region’s sustainable and coordinated development.

Suggested Citation

  • Jing Huang & Kai Liu, 2025. "The Spatial Correlation Network of China’s Urban Digital Economy and Its Formation Mechanism," Sustainability, MDPI, vol. 17(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5382-:d:1676493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5382/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5382-:d:1676493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.