IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i12p5299-d1674417.html
   My bibliography  Save this article

Curing Sustainability Assessment in Concrete Pavements: A 20-Year Simulation-Based Analysis in Urban Road Contexts

Author

Listed:
  • Julián Pulecio-Díaz

    (Faculty of Engineering, Universidad Cooperativa de Colombia, Medellin Edificio I, Ibague 730006, Colombia)

Abstract

In urban areas with warm climates, a lack of proper curing during concrete pavement construction can significantly reduce service life, increase maintenance needs, and compromise sustainability goals. Despite its relevance, the comprehensive impact of curing has been poorly quantified from a multidimensional perspective. This study aims to evaluate the effect of applying a liquid curing compound on the sustainability of concrete slab pavements over a 20-year horizon using a simulation-based approach. Two scenarios, cured and uncured, were modeled with HIPERPAV ® , incorporating site-specific climatic, structural, and material parameters. Based on projected maintenance cycles, nine sustainability indicators were calculated and grouped into environmental (CO 2 emissions, energy, water, and waste), social (accidents, travel time, satisfaction, and jobs), and economic (life-cycle maintenance cost) dimensions. Statistical tests (ANOVA, Welch ANOVA, and Kruskal–Wallis) were applied to assess significance. Results showed that curing reduced CO 2 emissions (−13.7%), energy consumption (−12.5%), and waste (−20.7%), while improving accident rates (−40.3%), user satisfaction (+17.8%), and maintenance cost savings (−9.5%). The findings support curing as a cost-effective and sustainability-enhancing strategy for urban pavement design and management.

Suggested Citation

  • Julián Pulecio-Díaz, 2025. "Curing Sustainability Assessment in Concrete Pavements: A 20-Year Simulation-Based Analysis in Urban Road Contexts," Sustainability, MDPI, vol. 17(12), pages 1-31, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5299-:d:1674417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/12/5299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/12/5299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sean Jamieson & Greg White & Luke Verstraten, 2024. "Principles for Incorporating Recycled Materials into Airport Pavement Construction for More Sustainable Airport Pavements," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    2. Ziyu Liu & Yanlin Yang, 2020. "Impact of Development Zone Construction on Labor Share in China," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    3. Santos, João & Flintsch, Gerardo & Ferreira, Adelino, 2017. "Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 15-31.
    4. Jin-Young Park & Byung-Soo Kim & Dong-Eun Lee, 2021. "Environmental and Cost Impact Assessment of Pavement Materials Using IBEES Method," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayara Sarisariyama Siverio Lima & Christina Makoundou & Cesare Sangiorgi & Florian Gschösser, 2022. "Life Cycle Assessment of Innovative Asphalt Mixtures Made with Crumb Rubber for Impact-Absorbing Pavements," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    2. Leonardo Sierra-Varela & Gonzalo Valdes-Vidal & Alejandra Calabi-Floody & Leonardo Lleuful-Cruz & Noe Villegas-Flores & Álvaro Filun-Santana, 2023. "Determination of the Social Contribution of Sustainable Asphalt Mixes," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    3. Zhang, Da & Huang, Qingxu & He, Chunyang & Wu, Jianguo, 2017. "Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 115-130.
    4. Mo Wang & Xu Zhong & Chuanhao Sun & Tong Chen & Jin Su & Jianjun Li, 2023. "Comprehensive Performance of Green Infrastructure through a Life-Cycle Perspective: A Review," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    5. Karen Castañeda & Omar Sánchez & Rodrigo F. Herrera & Guillermo Mejía, 2022. "Highway Planning Trends: A Bibliometric Analysis," Sustainability, MDPI, vol. 14(9), pages 1-33, May.
    6. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    7. Mayara S. Siverio Lima & Mohsen Hajibabaei & Sina Hesarkazzazi & Robert Sitzenfrei & Alexander Buttgereit & Cesar Queiroz & Viktors Haritonovs & Florian Gschösser, 2021. "Determining the Environmental Potentials of Urban Pavements by Applying the Cradle-to-Cradle LCA Approach for a Road Network of a Midscale German City," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    8. Haiyang Zhu & Shiyu Chen & Muhammad Irfan & Mingjun Hu & Jin Hu, 2024. "Exploring the role of the belt and road initiative in promoting sustainable and inclusive development," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 712-723, February.
    9. Anne de Bortoli & Adélaïde Féraille & Fabien Leurent, 2022. "Towards Road Sustainability—Part I: Principles and Holistic Assessment Method for Pavement Maintenance Policies," Post-Print hal-04483847, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5299-:d:1674417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.