IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p4797-d1662661.html
   My bibliography  Save this article

Optimizing Subsurface Drainage Pipe Layout Parameters in Southern Xinjiang’s Saline–Alkali Soils: Impacts on Soil Salinity Dynamics and Oil Sunflower Growth Performance

Author

Listed:
  • Guangning Wang

    (College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China)

  • Han Guo

    (College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China)

  • Qing Zhu

    (Xinjiang Corps Design Institute (Group) Co., Urumqi 830052, China)

  • Dong An

    (Xinjiang Corps Design Institute (Group) Co., Urumqi 830052, China)

  • Zhenliang Song

    (College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China)

  • Liang Ma

    (College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China)

Abstract

This study addresses secondary soil salinization driven by shallow groundwater in the Yanqi Basin of southern Xinjiang, focusing on subsurface drainage system (SDS) optimization for salt regulation and oil sunflower productivity improvement in severe saline–alkali soils. Through controlled field experiments conducted (May–October 2024), we evaluated five SDS configurations: control (CK, no drainage) and four drain spacing/depth combinations (20/40 m × 1.2/1.5 m). Comprehensive monitoring revealed distinct spatiotemporal patterns, with surface salt accumulation (0–20 cm: 18.59–32.94 g·kg −1 ) consistently exceeding subsurface levels (>20–200 cm: 6.79–17.69 g·kg −1 ). The A3 configuration (20 m spacing, 1.5 m depth) demonstrated optimal root zone desalination (0–60 cm: 14.118 g·kg −1 ), achieving 39.02% salinity reduction compared to CK ( p < 0.01). Multivariate analysis revealed strong depth-dependent inverse correlations between groundwater level and soil salinity (R 2 = 0.529–0.919), with burial depth exhibiting 1.7-fold greater regulatory influence than spacing parameters ( p < 0.01). Crop performance followed salinity gradients (A3 > A1 > A4 > A2 > CK), showing significant yield improvements across all SDS treatments versus CK ( p < 0.05). Multi-criteria optimization integrating TOPSIS modeling and genetic algorithms identified A3 as the Pareto-optimal solution. The optimized configuration (20 m spacing, 1.5 m depth) effectively stabilized aquifer dynamics, reduced topsoil salinization (0–60 cm), and enhanced crop adaptability in silt loam soils. This research establishes an engineering framework for sustainable saline–alkali soil remediation in arid basin agroecosystems, providing critical insights for water–soil management in similar ecoregions.

Suggested Citation

  • Guangning Wang & Han Guo & Qing Zhu & Dong An & Zhenliang Song & Liang Ma, 2025. "Optimizing Subsurface Drainage Pipe Layout Parameters in Southern Xinjiang’s Saline–Alkali Soils: Impacts on Soil Salinity Dynamics and Oil Sunflower Growth Performance," Sustainability, MDPI, vol. 17(11), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4797-:d:1662661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/4797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/4797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    2. Mehdi Jafari-Talukolaee & Henk Ritzema & Abdullah Darzi-Naftchali & Ali Shahnazari, 2016. "Subsurface Drainage to Enable the Cultivation of Winter Crops in Consolidated Paddy Fields in Northern Iran," Sustainability, MDPI, vol. 8(3), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darzi-Naftchali, Abdullah & Ritzema, Henk & Karandish, Fatemeh & Mokhtassi-Bidgoli, Ali & Ghasemi-Nasr, Mohammad, 2017. "Alternate wetting and drying for different subsurface drainage systems to improve paddy yield and water productivity in Iran," Agricultural Water Management, Elsevier, vol. 193(C), pages 221-231.
    2. Devkota, Krishna Prasad & Devkota, Mina & Rezaei, Meisam & Oosterbaan, Roland, 2022. "Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands," Agricultural Systems, Elsevier, vol. 198(C).
    3. Nicolette Matthews & Bennie Grové & Johannes Hendrikus Barnard, 2025. "Economic Analysis of Segmented Soil Salinity Management Using Current Irrigation Technology," Agriculture, MDPI, vol. 15(8), pages 1-14, April.
    4. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    5. Li, He & Miao, Qingfeng & Shi, Haibin & Li, Xianyue & Zhang, Shengwei & Zhang, Fengxia & Bu, Huailiang & Wang, Pei & Yang, Lin & Wang, Yali & Du, Heng & Wang, Tong & Feng, Weiying, 2024. "Remote sensing monitoring of irrigated area in the non-growth season and of water consumption analysis in a large-scale irrigation district," Agricultural Water Management, Elsevier, vol. 303(C).
    6. Darzi-Naftchali, Abdullah & Motevali, Ali & Keikha, Mahdi, 2022. "The life cycle assessment of subsurface drainage performance under rice-canola cropping system," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    8. J. W. Sirpa-Poma & F. Satgé & R. Pillco Zolá & E. Resongles & M. Perez-Flores & M. G. Flores Colque & J. Molina-Carpio & O. Ramos & M.-P. Bonnet, 2024. "Complementarity of Sentinel-1 and Sentinel-2 Data for Soil Salinity Monitoring to Support Sustainable Agriculture Practices in the Central Bolivian Altiplano," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    9. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Haghnazari, Farzad & Karandish, Fatemeh & Darzi-Naftchali, Abdullah & Šimůnek, Jiří, 2020. "Dynamic assessment of the impacts of global warming on nitrate losses from a subsurface-drained rainfed-canola field," Agricultural Water Management, Elsevier, vol. 242(C).
    11. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    12. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    13. Turner, Benjamin L. & Kodali, Srinadh, 2020. "Soil system dynamics for learning about complex, feedback-driven agricultural resource problems: model development, evaluation, and sensitivity analysis of biophysical feedbacks," Ecological Modelling, Elsevier, vol. 428(C).
    14. Masoud Pourgholam-Amiji & Abdolmajid Liaghat & Arezoo Ghameshlou & Mojtaba Khoshravesh & Muhammad Mohsin Waqas, 2020. "Investigation Of The Yield And Yield Components Of Rice In Shallow Water Table And Saline," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 36-40, August.
    15. Bin Yang & Ying Wang & Yan Li & Lizi Mo, 2023. "Empirical Investigation of Cultivated Land Green Use Efficiency and Influencing Factors in China, 2000–2020," Land, MDPI, vol. 12(8), pages 1-17, August.
    16. Matthew Scott Jansing & Faezeh Mahichi & Ranahansa Dasanayake, 2020. "Sustainable Irrigation Management in Paddy Rice Agriculture: A Comparative Case Study of Karangasem Indonesia and Kunisaki Japan," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    17. Yuhui Yang & Dongwei Li & Weixiong Huang & Xinguo Zhou & Zhaoyang Li & Xiaomei Dong & Xingpeng Wang, 2022. "Effects of Subsurface Drainage on Soil Salinity and Groundwater Table in Drip Irrigated Cotton Fields in Oasis Regions of Tarim Basin," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
    18. Jakhongirmirzo Mirzaqobulov & Kedar Mehta & Sana Ilyas & Abdulkhakim Salokhiddinov, 2024. "The Role of Collector-Drainage Water in Sustainable Irrigation for Agriculture in the Developing World: An Experimental Study," World, MDPI, vol. 6(1), pages 1-19, December.
    19. Muhammad Afnan Talib & Zhonghua Tang & Asfandyar Shahab & Jamil Siddique & Muhammad Faheem & Mehak Fatima, 2019. "Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan," IJERPH, MDPI, vol. 16(5), pages 1-21, March.
    20. Qian, Yingzhi & Han, Xudong & Zhu, Yan & Yang, Wei & Huang, Jiesheng, 2025. "A modified model for simulating subsurface drainage with synthetic envelope considering impacts of entrance resistance and its application," Agricultural Water Management, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:4797-:d:1662661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.