Author
Listed:
- Yuzhe Chen
(College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)
- Feng Wu
(College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)
- Linjun Shi
(College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)
- Yang Li
(College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)
- Zizhao Wang
(School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)
- Yanbo Ding
(College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China)
Abstract
The sub-synchronous oscillation (SSO) characteristics and suppression strategies of a hybrid system comprising doubly fed induction generator (DFIG)-based wind turbines and synchronous pumped storage units connected to the power grid via series-compensated transmission lines are analyzed. A modular modeling approach is used to construct a detailed system model, including the wind turbine shaft system, DFIG, converter control system, synchronous machine, excitation system, power system stabilizer (PSS), and series-compensated transmission lines. Eigenvalue calculation-based small-signal stability analysis is conducted to identify the dominant oscillation modes. Suppression measures are also developed using relative participation analysis, and simulations are carried out to validate the accuracy of the model and analysis method. The analysis results indicate that the SSO phenomenon is primarily influenced by the electrical state variables of the DFIG system, while the impact of the state variables of the synchronous machine is relatively minor. When the level of series compensation in the system increases, SSO is significantly exacerbated. To address this issue, a sub-synchronous damping controller (SSDC) is incorporated on the rotor side of the DFIG. The results demonstrate that this method effectively mitigates the SSO and significantly enhances the system’s robustness against disturbances. Furthermore, a simplified modeling approach is proposed based on relative participation analysis. This method neglects the dynamic characteristics of the synchronous machine while considering its impact on the steady-state impedance and initial conditions of the model. These findings provide theoretical guidance and practical insights for addressing and mitigating SSO issues in hybrid renewable energy systems composed of DFIGs and synchronous machines.
Suggested Citation
Yuzhe Chen & Feng Wu & Linjun Shi & Yang Li & Zizhao Wang & Yanbo Ding, 2025.
"Analysis and Suppression Strategies of Sub-Synchronous Oscillations in DFIG Wind Farm Integrated with Synchronous Pumped Storage System,"
Sustainability, MDPI, vol. 17(10), pages 1-22, May.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:10:p:4588-:d:1657844
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4588-:d:1657844. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.