IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3662-d1383987.html
   My bibliography  Save this article

Can Arbuscular Mycorrhizal Fungi Enhance Crop Productivity and Quality in Hydroponics? A Meta-Analysis

Author

Listed:
  • Yahia A. Othman

    (Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan)

  • Kholoud M. Alananbeh

    (Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan)

  • Monther M. Tahat

    (Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan)

Abstract

Finding environmentally friendly solutions for crop growth and productivity has been gaining more attention recently. This meta-analysis aims to understand the combined application of arbuscular mycorrhizal fungi (AMF) and hydroponic systems compared to AMF in conventional (soil) systems. The analysis of up-to-date studies revealed that the root colonization, calculated as the proportion of colonized root segments relative to the total root length, by AMF in conventional (soil-based) culture exceeded hydroponic (or soilless) culture systems by 16.8%. The mean root colonization by AMF was determined to be 52.3% in hydroponic systems and 61.1% in conventional systems. Within hydroponic systems, the root colonization ranged from 2% to 20% after 10 days of inoculation, and notably, it exceeded 50% after 30 to 65 days, depending on the growing substrate and species. Under hydroponics, AMF application had a higher (compared to none-inoculated) positive effect on crop biomass and yield than fruit and leaf quality (antioxidants, phenols, and sugars) as well as leaf nutrients. However, AMF do not always have the potential to improve crop growth, quality and productivity in hydroponics. Among the studies analyzed in this review, approximately 34% (no effect: 29%; negative: 5%) reported no discernible positive effect on biomass or yield, 37% (no effect: 16%; negative: 21%) on fruit or leaf quality, and 60% (no effect: 47%; negative: 13%) on nutrient levels within plant tissues. To improve the performance of AMF in hydroponic systems, the meta-analysis recommended maintaining phosphorus levels in the nutrient solution within the range of 0.15 to 15.5 mg L −1 as elevated levels (40–75 mg L −1 ) were found to significantly reduce AMF colonization. Additionally, it was observed that certain hydroponic techniques, such as the presence of air bubbles generated by air pumps in floating hydroponic systems (Deep Flow technique) and continuous circulation of the nutrient solution (Ebb and Flow systems), may create dynamic conditions that could potentially hinder the introduction of AMF spores into hydroponic systems and potentially compromise the integrity of the spores and hyphae.

Suggested Citation

  • Yahia A. Othman & Kholoud M. Alananbeh & Monther M. Tahat, 2024. "Can Arbuscular Mycorrhizal Fungi Enhance Crop Productivity and Quality in Hydroponics? A Meta-Analysis," Sustainability, MDPI, vol. 16(9), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3662-:d:1383987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3662/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3662/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Q.S. Wu & Y.N. Zou & W. Liu & X.F. Ye & H.F. Zai & L.J. Zhao, 2010. "Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(10), pages 470-475.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J.K. Sun & T. Li & J.B. Xia & J.Y. Tian & Z.H. Lu & R.T. Wang, 2011. "Influence of salt stress on ecophysiological parameters of Periploca sepium bunge," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(4), pages 139-144.
    2. Q.S. Wu, 2011. "Mycorrhizal efficacy of trifoliate orange seedlings on alleviating temperature stress," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(10), pages 459-464.
    3. G. Qiao & X.P. Wen & L.F. Yu & X.B. Ji, 2011. "The enhancement of drought tolerance for pigeon pea inoculated by arbuscular mycorrhizae fungi," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(12), pages 541-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3662-:d:1383987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.