IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2612-d1361710.html
   My bibliography  Save this article

Formulating Eco-Friendly Foamed Mortar by Incorporating Sawdust Ash as a Partial Cement Replacement

Author

Listed:
  • Samadar S. Majeed

    (Civil Engineering Department, Nawroz University, Duhok 42001, Iraq)

Abstract

Utilizing sawdust efficiently to produce construction materials can help safeguard the environment and decrease costs by minimizing the need for traditional resources and reducing carbon dioxide (CO 2 ) emissions. Additionally, recycling sawdust plays an essential role in creating a sustainable ecosystem. Hence, this study aimed to examine the potential use of sawdust ash (SDA) as a partial cement replacement on foamed mortar (FM) properties, including its fresh, mechanical, transport, thermal, and microstructural properties. A variety of FM mixtures were tested for workability, density, consistency, intrinsic air permeability, porosity, split tensile strength, compressive strength, flexural strength, and thermal conductivity by replacing cement with SDA at varying percentages of 0%, 10%, 20%, 30%, 40%, and 50%. The results revealed that FM’s workability was reduced by the introduction of SDA with a higher percentage cement replacement, while the density of the FM mixtures was reduced due to SDA’s specific gravity being lower than that of cement. A linear improvement was observed in the air permeability, sorptivity, and porosity of FM–SDA composites with an increased SDA percentage to 20%. It is notable that these properties started to deteriorate once the cement replacement by SDA surpassed 30%. A noticeable improvement of mechanical strength properties of the FM was found at 20% of SDA content, but they deteriorated when the SDA content was more than 30%. FM blends with higher SDA contents exhibited larger and more apparent voids, according to SEM analysis. In conclusion, incorporating sawdust into formulations emerges as a viable method for FM production. This approach not only mitigates the environmental impact of sawdust disposal but also reduces the need for extracting natural resources in construction material manufacturing.

Suggested Citation

  • Samadar S. Majeed, 2024. "Formulating Eco-Friendly Foamed Mortar by Incorporating Sawdust Ash as a Partial Cement Replacement," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2612-:d:1361710
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2612/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2612-:d:1361710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.