IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2172-d1351850.html
   My bibliography  Save this article

Helically Coiled Tube Flocculators in Water Clarification Systems: Optimal Length Evaluation and Process Efficiency Probabilistic Analysis

Author

Listed:
  • Danieli S. Oliveira

    (Federal Institute of Espírito Santo, Campus Cariacica, Rodovia Governador José Sette, 184, Cariacica 29150-410, Brazil
    These authors contributed equally to this work.)

  • Clainer B. Donadel

    (Federal Institute of Espírito Santo, Campus Vitória, Avenida Vitória, 1.729, Vitória 29040-780, Brazil
    These authors contributed equally to this work.)

Abstract

New sustainable technologies have been explored as potential solutions to address the global issue of water scarcity by enhancing water treatment processes. In this context, an innovative coagulation/flocculation unit known as the helically coiled tube flocculator (HCTF) has emerged, offering notable advantages such as high process efficiency, short detention time, and cost-effectiveness compared to conventional hydraulic units. The HCTF harnesses its flow energy to disperse coagulation/flocculation agents and facilitate the formation of flocs through collisions between destabilized particles. This paper introduces an assessment of the process efficiency, geometric properties, and hydraulic characteristics of an alternative and sustainable water clarification system incorporating an HCTF, with the aim of determining its optimal length. In HCTFs, the flocculator’s length (referred to as L) can exert a significant influence on process efficiency, necessitating a comprehensive evaluation of this parameter for the rational design of such units. To accomplish this, the paper scrutinizes physical experimental findings from previous research articles, which are related to the efficiency of flocculation (indirectly estimated by analyzing turbidity removal efficiency). Additionally, it examines the geometric and hydraulic attributes across 48 distinct variations of HCTFs. This study culminates in the development of a model for determining the optimal length for HCTFs. Furthermore, it includes a probabilistic assessment that establishes a connection between the optimal length and other parameters involved in the clarification process—whether deterministic or probabilistic—and their impact on the final process efficiency, all with a 90% confidence level. This paper stands out by pioneering the determination of the optimal length of HCTFs, filling a gap in the existing literature, which previously only mentioned the importance of this parameter in process efficiency without providing a predictive model. The results highlight the robustness of the proposed alternative clarification system. Even in scenarios with substantial variations in dimensional hydraulic parameters (such as a worst-case relative standard deviation of 20%), the process efficiency fluctuations range between 1.3% and 5.2%. These outcomes lend support to the adoption of such alternative water clarification systems. They also underscore the potential of probabilistic evaluation as a valuable tool for investigating novel water and wastewater treatment units and enhancing existing ones.

Suggested Citation

  • Danieli S. Oliveira & Clainer B. Donadel, 2024. "Helically Coiled Tube Flocculators in Water Clarification Systems: Optimal Length Evaluation and Process Efficiency Probabilistic Analysis," Sustainability, MDPI, vol. 16(5), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2172-:d:1351850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2172/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2172-:d:1351850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.