IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1568-d1338198.html
   My bibliography  Save this article

Climate Change Impacts on Water Sensitive Urban Design Technologies

Author

Listed:
  • Amanda Chao Guerbatin

    (KBR Inc., Adelaide, SA 5000, Australia)

  • Faisal Ahammed

    (Sustainable Infrastructure and Resource Management (SIRM), UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia)

Abstract

Water Sensitive Urban Design (WSUD) technologies are green infrastructures that aim to restore the hydrological balance of urban catchments. This research aimed to investigate the impacts of climate change in an infiltration-based WUSD, called soak-away, at residential allotments from a Village Green townhouse complex, Aldinga, South Australia. To do so, specific rainfall data for the study area were collected and then projected for the years 2030, 2060 and 2090, considering the RCP 4.5 and 8.5 pathways. The projections were determined using CSIRO’s Climate Futures tool, as suggested in the Australia Rainfall Runoff guidelines. The rainfall’s projected impacts on the soak-away performance and dimensions were analyzed in terms of the Village Green catchment conditions, using the MUSIC model and stormwater source control principles. When analyzing the RCP 8.5 pathway for different years, the distinction in soak-away design was more evident and was directly related to the peak flow percentage of the increase obtained in the MUSIC model. On the other hand, for RCP 4.5, the years 2030 and 2060 presented the same characteristics, and 2090 had an equivalent rainfall projection as RCP 8.5 2030. Regarding treatment effectiveness, the soak-away dimensions reached almost 100% of pollutant removal, which indicates that the approach might oversize the system. Nonetheless, when comparing all soak-away designs, the recommended soak-away system tends to be conservative due to the uncertainties surrounding future climate projections.

Suggested Citation

  • Amanda Chao Guerbatin & Faisal Ahammed, 2024. "Climate Change Impacts on Water Sensitive Urban Design Technologies," Sustainability, MDPI, vol. 16(4), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1568-:d:1338198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1568/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1568-:d:1338198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.