Author
Listed:
- Kyle Pender
(Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK)
- Liu Yang
(Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK)
Abstract
The UK has no established process for recycling waste glass fibre-reinforced thermosets that are widely used within wind blade structures. Consequently, these materials are typically disposed of in landfills or undergo energy recovery in waste facilities. This study investigates the carbon footprint of the fluidised bed process for recycling glass fibre composite waste, considering the present and future scenarios of composite waste management in the UK. The impact was compared to conventional disposal routes and other prominent recycling technologies, such as cement kiln co-processing and mechanical recycling, by developing energy and material flow models for each waste treatment strategy. Variables, such as the type of waste, the quantity of recycling facilities in the UK, and waste haulage distance, were examined to inform the lowest impact deployment of recycling technologies. Cement kiln co-processing, mechanical, and fluidised bed recycling technologies reduced the global warming potential of processing wind blade waste compared with conventional disposal routes, with impacts of −0.25, −1.25, and −0.57 kg CO 2 e/kg GRP waste, respectively. Mechanical recycling had the lowest global warming potential resulting from low greenhouse gas emissions associated with the process itself and potentially high offsets by replacing glass fibre in the production of moulding compound. Composite wind turbine blade waste was found to be a particularly promising feedstock for the fluidised bed process due to relatively low resin content diminishing direct greenhouse gas emissions during thermal decomposition, as well as high material recovery offsets due to the high glass fibre content of this waste stream.
Suggested Citation
Kyle Pender & Liu Yang, 2024.
"Glass Fibre Composites Recycling Using the Fluidised Bed: A Comparative Study into the Carbon Footprint in the UK,"
Sustainability, MDPI, vol. 16(3), pages 1-23, January.
Handle:
RePEc:gam:jsusta:v:16:y:2024:i:3:p:1016-:d:1325843
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1016-:d:1325843. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.