Author
Listed:
- Yuyi Lu
(College of Science, Wuhan University of Science and Technology, Wuhan 430081, China)
- Wenbo Wang
(College of Science, Wuhan University of Science and Technology, Wuhan 430081, China)
- Baosheng Lian
(College of Science, Wuhan University of Science and Technology, Wuhan 430081, China)
- Chencheng He
(College of Science, Wuhan University of Science and Technology, Wuhan 430081, China)
Abstract
Motor imagery brain–computer interface (MI-BCI) systems hold the potential to restore motor function and offer the opportunity for sustainable autonomous living for individuals with a range of motor and sensory impairments. The feature extraction and classification of motor imagery EEG signals related to motor imagery brain–computer interface systems has become a research hotspot. To address the challenges of difficulty in feature extraction and low recognition rates of motor imagery EEG signals caused by individual variations in EEG signals, a classification algorithm for EEG signals based on multi-feature fusion and the SVM-AdaBoost algorithm was proposed to improve the recognition accuracy of motor imagery EEG signals. Initially, the electroencephalography (EEG) signals are preprocessed using Finite Impulse Response (FIR) filters, and a multi-wavelet framework is constructed based on the Morlet wavelet and the Haar wavelet. Subsequently, the preprocessed signals undergo multi-wavelet decomposition to extract energy features, Common Spatial Patterns (CSP) features, Autoregressive (AR) features, and Power Spectral Density (PSD) features. The extracted features are then fused, and the fused feature vector is normalized. Following that, classification is implemented within the SVM-AdaBoost algorithm. To enhance the adaptability of SVM-AdaBoost, the Grid Search method is employed to optimize the penalty parameter and kernel function parameter of the SVM. Concurrently, the Whale Optimization Algorithm is utilized to optimize the learning rate and number of weak learners within the AdaBoost ensemble, thereby refining the overall performance. In addition, the classification performance of the algorithm is validated using a brain-computer interface (BCI) dataset. In this study, it was found that the classification accuracy reached 95.37%. Via the analysis of motor imagery electroencephalography (EEG) signals, the activation patterns in different regions of the brain can be detected and identified, enabling the inference of user intentions and facilitating communication and control between the human brain and external devices.
Suggested Citation
Yuyi Lu & Wenbo Wang & Baosheng Lian & Chencheng He, 2024.
"Feature Extraction and Classification of Motor Imagery EEG Signals in Motor Imagery for Sustainable Brain–Computer Interfaces,"
Sustainability, MDPI, vol. 16(15), pages 1-24, August.
Handle:
RePEc:gam:jsusta:v:16:y:2024:i:15:p:6627-:d:1448967
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6627-:d:1448967. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.