IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6282-d1440878.html
   My bibliography  Save this article

Effects of Gamma-Synthesized Chitosan on Morphological, Thermal, Mechanical, and Heavy-Metal Removal Properties in Natural Rubber Foam as Sustainable and Eco-Friendly Heavy Metal Sorbents

Author

Listed:
  • Thitiwan Intha

    (Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
    Special Research Unit of Radiation Technology for Advanced Materials (RTAM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand)

  • Ekachai Wimolmala

    (Polymer PROcessing and Flow (P-PROF) Research Group, Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand)

  • Pattra Lertsarawut

    (Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok 26120, Thailand)

  • Kiadtisak Saenboonruang

    (Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
    Special Research Unit of Radiation Technology for Advanced Materials (RTAM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
    Specialized Center of Rubber and Polymer Materials in Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand)

Abstract

The properties of natural rubber foam (NRF) containing gamma-synthesized chitosan (CS) powder were investigated to address the growing demand for efficient methods to treat industrial wastewater contaminated with heavy metals. The CS powder was prepared by irradiating chitin (CT) powder with varying doses of gamma rays (0–100 kGy), followed by deacetylation using 40% sodium hydroxide (NaOH) at 100 °C for 1 h. The resulting CS powders were then mixed with natural rubber latex (NRL) at different contents (0, 3, 6, and 9 parts per hundred parts of rubber by weight; phr) and processed using Dunlop techniques to prepare the foam samples. The experimental findings indicated that the degree of deacetylation (%DD) of the CS powder increased initially with gamma doses up to 60 kGy but then decreased at 80 and 100 kGy. In addition, when the CS powder was incorporated into the NRF samples, there were increases in total surface area, density, compression set, and hardness (shore OO), with increasing gamma doses and CS contents. Furthermore, the determination of heavy metal adsorption properties for Cu, Pb, Zn, and Cd showed that the developed NRF sample exhibited high adsorption capacities. For instance, their removal efficiencies reached 94.9%, 82.5%, 91.4%, and 97.0%, respectively, in NRF containing 9 phr of 60 kGy CS. Notably, all adsorption measurements were determined using 3 cm × 3 cm × 2.5 cm specimens submerged in respective metal solutions, with an initial concentration of 25 mg/L. However, the removal capacity per unit mass of the sample (mg/g) showed less dependencies on CS contents, probably due to the higher density of CS/NRF composites in comparison to pristine NRF, resulting in a smaller volume of the former being submerged in the solution, subsequently suppressing the effects from CS in the adsorption. Lastly, tests on the reusability of the developed NRF indicated that the samples could be reused for up to three cycles, with the Cu removal capacity remaining relatively high (83%) in the sample containing 9 phr of 60 kGy CS. The overall outcomes implied that the developed NRF with the addition of gamma-synthesized CS not only offered effective and eco-friendly heavy metal adsorption capacity to improve public health safety and the environment from industrial wastewater but also promoted greener and safer procedures for the synthesis/modification of similar substances through radiation technologies.

Suggested Citation

  • Thitiwan Intha & Ekachai Wimolmala & Pattra Lertsarawut & Kiadtisak Saenboonruang, 2024. "Effects of Gamma-Synthesized Chitosan on Morphological, Thermal, Mechanical, and Heavy-Metal Removal Properties in Natural Rubber Foam as Sustainable and Eco-Friendly Heavy Metal Sorbents," Sustainability, MDPI, vol. 16(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6282-:d:1440878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6282/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6282-:d:1440878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.