Author
Listed:
- Argyri-Ioanna Petaloti
(Laboratory of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)
- Dimitris S. Achilias
(Laboratory of Polymer and Color Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)
Abstract
Aligned with the principles of the circular economy and aiming at the production of environmentally friendly materials for food packaging applications, sustainable biocomposite films based on poly(lactic acid) (PLA) and coffee silverskin (SS), were developed. Coffee silverskin is a by-product of the coffee roasting process, while PLA is one of the most promising bio-based polymers. Several composites were prepared with different loadings of SS, ranging from 2.5 to 20 wt.%, via the solution casting method. The findings indicated that the effective dispersion of coffee silverskin in PLA was successfully accomplished and that a bleaching treatment of the filler leads to better interfacial interaction. The addition of silverskin, in any proportion, did not affect the melting point and glass transition temperature of the polymer matrix or the oxygen permeability of the film. Moreover, the degree of swelling was increased, more so for the films with modified particles, whereas the water vapor transmission rate and permeability increased only after the addition of high amounts (>10%) of surface-treated silverskin. A gradual decrease in color lightness was measured with the increasing concentration of silverskin, and the color was more intense in the untreated samples. The antioxidant activity of the films increased gradually with increasing additions of coffee silverskin due to the presence of compounds such as polyphenols. The chemical treatment of coffee silverskin resulted in the films having improved mechanical properties, as the chemical treatment facilitated stronger bonding between the base material and the additive. Therefore, sustainable composites with enhanced antioxidant activity can be produced by the incorporation of a food industry by-product into a PLA matrix.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:12:p:5075-:d:1415121. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.