IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p76-d1304375.html
   My bibliography  Save this article

Sustainable Biocomposites Based on Invasive Rugulopteryx okamurae Seaweed and Cassava Starch

Author

Listed:
  • Ismael Santana

    (Escuela Politécnica Superior, Universidad de Sevilla, Calle Virgen de África, 7, 41011 Sevilla, Spain)

  • Manuel Felix

    (Escuela Politécnica Superior, Universidad de Sevilla, Calle Virgen de África, 7, 41011 Sevilla, Spain)

  • Carlos Bengoechea

    (Escuela Politécnica Superior, Universidad de Sevilla, Calle Virgen de África, 7, 41011 Sevilla, Spain)

Abstract

The development of plastic materials based on cassava reduces the dependence on non-biodegradable petroplastics, and enhances the sustainability of the cassava value chain. In this sense, cassava starch (CS) is used as a reinforcer of biocomposites that also contain brown seaweed Rugulopteryx okamurae (RO). RO is an invasive species whose accumulation poses a strong environmental burden in the strait of Gibraltar. Because it can be used as a biopolymer, its use in the plastics industry would promote a healthy ecosystem. Thus, RO/CS mixtures with different RO/CS ratios (from 100/0 to 30/70) were processed through injection moulding at 140 °C. The thermal properties of plastic samples have been analysed through calorimetric, thermogravimetric and rheological techniques. Moreover, the mechanical properties, hydrophilicity, and microstructure of samples have also been studied. Thus, biopolymer degradation of the composites seems to happen at 213–303 °C, as revealed by thermal gravimetric analysis (TGA) of the samples, whereas an exothermic peak observed in DSC at 350–500 °C would be related to the degradation of organic compounds in anaerobic conditions. Rheological tests evidenced a softening of the RO/CS biocomposites when CS content increased in the formulation, so that elastic moduli dropped from 23.72 MPa in the 70/30 to 5.69 MPa for 30/70. However, RO/CS biocomposites became more resistant and deformable as CS content increased: maximum stress and strain at break increased from 78.2 kPa and 0.14% (70/30 system) to 580 kPa and 25.2% (30/70), respectively. Finally, no important differences were observed in their water uptake capacities or microstructures when increasing CS ratio in the mixture. As cassava starch can be extracted from agro-industrial wastes (i.e., cassava peel and bagasse), its use in biocomposites could be of great use for a more sustainable approach for plastic materials.

Suggested Citation

  • Ismael Santana & Manuel Felix & Carlos Bengoechea, 2023. "Sustainable Biocomposites Based on Invasive Rugulopteryx okamurae Seaweed and Cassava Starch," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:76-:d:1304375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/76/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/76/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:76-:d:1304375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.