IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7728-d1142151.html
   My bibliography  Save this article

Effect of Damage Severity and Flexural Steel Ratio on CFRP Repaired RC Beams

Author

Listed:
  • Moatasem M. Fayyadh

    (Asset Lifecycle, Sydney Water, Sydney, NSW 2150, Australia)

  • Hashim Abdul Razak

    (Department of Civil Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

Abstract

The study aims to investigate the effectiveness and failure modes of using CFRP-bonded sheets as a flexural repair system for RC beams, considering the effect of pre-repair damage levels and flexural steel design limits. This study investigated two different flexural design criteria: RC beams reinforced with the minimum flexural steel limit (ρmin) and RC beams reinforced with the maximum flexural steel limit (ρmax). Additionally, three pre-repair damage levels were considered: design limit load, steel yield limit load, and failure limit load. The study results showed that the RC beams’ repair effectiveness depends on the ratio of the flexural steel provided. Specifically, the beams with a minimum steel ratio demonstrated a higher capacity restoration of 49% to 85% (corresponding to the pre-repair damage level, i.e., design load to failure load), while beams with a maximum steel ratio only achieved a capacity restoration of 15.3% to 28.4%. Regarding failure modes, the beams experienced an intermediate-induced crack (IC) debonding due to pre-repair flexural cracks. Despite the debonding of the CFRP sheets, the beams still had the ability to withstand loads close to their unrepaired capacity. This indicates the possibility of re-repairing the beams after the CFRP debonding. Overall, the findings of this study can be used in the industry to repair RC beams and girders that have been damaged due to extreme loading conditions or other reasons. By using CFRP externally bonded sheets, the capacity of the structures can be restored regardless of the pre-repair damage level and the flexural steel design criteria.

Suggested Citation

  • Moatasem M. Fayyadh & Hashim Abdul Razak, 2023. "Effect of Damage Severity and Flexural Steel Ratio on CFRP Repaired RC Beams," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7728-:d:1142151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7728/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7728/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7728-:d:1142151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.