IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6596-d1122738.html
   My bibliography  Save this article

Numerical Analysis of Sulfamerazine Solubility in Acetonitrile + 1-Propanol Cosolvent Mixtures at Different Temperatures

Author

Listed:
  • Claudia Patricia Ortiz

    (Programa de Administración en Seguridad y Salud en el Trabajo, Grupo de Investigación en Seguridad y Salud en el Trabajo, Corporación Universitaria Minuto de Dios-UNIMINUTO, Neiva 410001, Colombia)

  • Rossember Edén Cardenas-Torres

    (Grupo de Fisicoquímica y Análisis Matemático, Facultad de Ciencias y Humanidades, Fundación Universidad de América, Bogotá 111221, Colombia)

  • Mauricio Herrera

    (Programa de Ingeniería Civil, Grupo de Investigación de Ingenierías UCC-Neiva, Facultad de Ingeniería, Sede Neiva, Universidad Cooperativa de Colombia, Neiva 410001, Colombia)

  • Daniel Ricardo Delgado

    (Programa de Ingeniería Civil, Grupo de Investigación de Ingenierías UCC-Neiva, Facultad de Ingeniería, Sede Neiva, Universidad Cooperativa de Colombia, Neiva 410001, Colombia)

Abstract

The current challenges of the pharmaceutical industry regarding the environmental impact caused by its waste have led to the design and development of more efficient industrial processes. In this context, solubility studies are at the core of different processes, such as formulation, preformulation, synthesis, purification, recrystallization, quantification, and quality control. This research evaluates the solubility of sulfamerazine (SMR) in acetonitrile + 1-propanol cosolvent mixtures at nine temperature levels with UV/vis spectrophotometry using the vial-shake method. According to the analysis of the solid phase in equilibrium using differential scanning calorimetry, there were no polymorphic changes. The minimal solubility of SMR was reached in 1-propanol at 278.15 K, and the maximal solubility in acetonitrile at 313.15 K. In all cases, the process was endothermic and dependent on the cosolvent composition, and the solution enthalpy drove the solution process. The solubility data were well correlated with the van’t Hoff, Yalkowsky–Roseman–van’t Hoff, Apelblat, Buchowski–Ksiazczak λ h, Yaws, NRTL, Wilson, and modified Wilson models, with the YR model being one of the most attractive because it presented an excellent prediction percentage from four sets of experimental data. The solution process of SMR in acetonitrile + 1-propanol cosolvent mixtures depends on the affinity of SMR for acetonitrile and temperature increase.

Suggested Citation

  • Claudia Patricia Ortiz & Rossember Edén Cardenas-Torres & Mauricio Herrera & Daniel Ricardo Delgado, 2023. "Numerical Analysis of Sulfamerazine Solubility in Acetonitrile + 1-Propanol Cosolvent Mixtures at Different Temperatures," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6596-:d:1122738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6596/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6596-:d:1122738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.