IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4668-d1089024.html
   My bibliography  Save this article

Changes in Extremes Rainfall Events in Present and Future Climate Scenarios over the Teesta River Basin, India

Author

Listed:
  • Pawan Kumar Chaubey

    (DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India)

  • Rajesh Kumar Mall

    (DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India)

  • Prashant K. Srivastava

    (DST-Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India)

Abstract

Globally, changes in hydroclimate extremes such as extreme precipitation events influence water resources, natural environments, and human health and safety. During recent decades, India has observed an enormous increase in rainfall extremes during the summer monsoon (June to September) seasons. However, future extreme rainfall events have significant uncertainty at the regional scale. Consequently, a comprehensive study is needed to evaluate the extreme rainfall events at a regional river basin level in order to understand the geomorphological characteristics and pattern of rainfall events. In the above purview, the current research focuses on changes in extreme rainfall events obtained through observed gridded datasets and future scenarios of climate models derived through the Coupled Model Intercomparison Project (CMIP). The results highlight a significant rise in the extremes of precipitation events during the first half of the 21st century. In addition, our study concludes that accumulated precipitation will increase by five days in the future, while the precipitation maxima will increase from 200 to 300 mm/day at the 2-year, 50-year, and 100-year return periods. Finally, it is found that during the middle of the 21st century the 23.37% number of events will increase over the TRB at the 90th percentile.

Suggested Citation

  • Pawan Kumar Chaubey & Rajesh Kumar Mall & Prashant K. Srivastava, 2023. "Changes in Extremes Rainfall Events in Present and Future Climate Scenarios over the Teesta River Basin, India," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4668-:d:1089024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4668/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4668/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pawan K. Chaubey & Prashant K. Srivastava & Akhilesh Gupta & R. K. Mall, 2021. "Integrated assessment of extreme events and hydrological responses of Indo-Nepal Gandak River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8643-8668, June.
    2. Akshay Omprakash Jain & Tejaskumar Prakashchandra Thaker & Anil Kumar Misra & Anupam Kumar Singh & Priyanka Kumari, 2021. "Determination of sensitivity of drainage morphometry towards hydrological response interactions for various datasets," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1799-1822, February.
    3. Kamal Ahmed & Zafar Iqbal & Najeebullah Khan & Balach Rasheed & Nadeem Nawaz & Irfan Malik & Mohammad Noor, 2020. "Quantitative assessment of precipitation changes under CMIP5 RCP scenarios over the northern sub-Himalayan region of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7831-7845, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subha Roy & Souvik Das & Somasis Sengupta, 2023. "Predicting terrain erosion susceptibility from drainage basin morphometry using ALOS-PALSAR DEM: analysis from PCA-weighted AHP approach in a river system of Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9589-9617, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4668-:d:1089024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.