IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2779-d1056830.html
   My bibliography  Save this article

Facile Formulation of New Innovative Eco-Friendly Hybrid Protective Coating for Mild Steel in Acidic Media

Author

Listed:
  • Rasmiah S. Almufarij

    (Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia)

Abstract

This research deals with the formulation, characterization, and evaluation of new anticorrosive protective coatings. The study objective is to protect mild carbon steel in acidic media by adherent nonporous polymeric coatings formulated from polystyrene and shrimp shells. Solid wastes of shrimp shells are dried into a fine powder and sonicated in toluene. The obtained suspension is refluxed with polystyrene. The hot-melt coatings are applied to the metal surface by the hot dipping technique. The shrimp shells improve the performance of polystyrene. These eco-friendly, low-cost anticorrosive coatings are formulated from solid waste (SW) of shrimp shells and polystyrene (PS) with no aiding additives. Intense vibrational bands in the infrared spectra and the high thermal stability of the coating samples confirm the compatibility of the coating constituents. The results of the evaluation of coating performance by electrochemical impedance spectroscopy and potentiodynamic polarization techniques show that the coating is protective for mild steel in the aggressive acidic media of 1.0 M HCl. The coating protects the metal surface without affecting the corrosion mechanism. Polarization curves show that the coating film retards both the anodic metal dissolution reaction and the cathodic hydrogen evolution reaction, acting as mixed-type inhibitors. The percent protection (%P) increases with the increasing weight percent (wt.%) of PS and the SW of shrimp shells. A %P up to 99% is achieved for the coating composition of 2.0 g/L PS + 0.02 g/L SW. The %P obtained by impedance and polarization measurements are in good agreement. The prepared multi-functional polymeric coating forms an adherent nonporous coating film on the metal surface. Impedance plots show that the coating samples are insulating dielectric coatings that electrically insulate the metal surface from the aggressive acidic media. The coating protects the metal surface by the adsorption mechanism. Shrimp shells fill the pores and increase the stiffness of the polymeric coating film of polystyrene. The obtained results in this study will be useful for all industrial sectors and academic research in the field of corrosion control of metals and alloys.

Suggested Citation

  • Rasmiah S. Almufarij, 2023. "Facile Formulation of New Innovative Eco-Friendly Hybrid Protective Coating for Mild Steel in Acidic Media," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2779-:d:1056830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2779/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2779-:d:1056830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.