IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1468-d1033563.html
   My bibliography  Save this article

Procedure of Numerical Modelling and Estimation of Sieve Curve Changes as a Tool to Define Riverbed’s Erodibility

Author

Listed:
  • Jacek Florek

    (Department Water Engineering and Geotechnics, Agriculture University, Al. A. Mickiewicza 24/28, 30-059 Cracow, Poland)

  • Maciej Wyrębek

    (Department Water Engineering and Geotechnics, Agriculture University, Al. A. Mickiewicza 24/28, 30-059 Cracow, Poland)

Abstract

The numerical 1-D HEC-RAS modelling tool was supported by the estimation of the sieve curve changes procedure to measure the scale of predicted discharges along a stretch of stream in southern Poland on the Olkusz Upland. The procedure was calibrated in southern Poland on the mountain streams during high-stage events, using a radiotracer application in bedload transport. Particular terrain hypsometry, created by the dissolution of limestone, forced the deep erosion of the river valley bottom; it is here that the current shape of the riverbed of the Prądnik stream is placed. While numerical modelling is widely used in hydraulics, standards have been set for the estimation of flood risk zones; these estimations suggest that the densities of the measured cross-sections are less then optimal, and that the erosive processes are more frequent. This was proved by identifying a number of erosive sections. A new procedure proposed combining the prediction of grain size distribution with hydraulic modelling. Calculations using the estimation of sieve curves, based on the processes of creation and destruction in the armouring layer, have proven to be a challenge for the existing standards of hydraulic modelling. We believe that it is easy to expand the usefulness of the 1D model by utilising its results for this procedure. For the purpose of this type of analysis, dense cross-section measurements are involved, careful modelling is required and a wide range of additional in-field data has to be gathered. For the interpretation of the results, the relation between channel-forming discharge, bankfull discharge, present and critical shear stresses, as well as the mean diameter of the grain size and other estimated sieve curve parameters, were evaluated. Channel-forming discharge is smaller than the bankfull discharge in more than one third of the segment where the erosion process is more frequent and the stability of the riverbed is compromised. Channel-forming discharge was at least twice as high in the stable sections, compared to the erosive section. The presented method will help to find unstable riverbed sections, in order to mitigate the dimension of river training techniques and protect the natural state of the river. While we are in the period of development in this region of Europe, limiting the scope of interference in rivers and streams by applying this method may create an opportunity for the concept of river training close to nature.

Suggested Citation

  • Jacek Florek & Maciej Wyrębek, 2023. "Procedure of Numerical Modelling and Estimation of Sieve Curve Changes as a Tool to Define Riverbed’s Erodibility," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1468-:d:1033563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1468/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aurelian Cosmin Moldovan & Tomi Alexandrel Hrăniciuc & Valer Micle & Nicolae Marcoie, 2023. "Research on the Sustainable Development of the Bistrita Ardeleana River in Order to Stop the Erosion of the Riverbanks and the Thalweg," Sustainability, MDPI, vol. 15(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1468-:d:1033563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.