IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1157-d1028551.html
   My bibliography  Save this article

Designing and Building an Intelligent Pavement Management System for Urban Road Networks

Author

Listed:
  • Maryam Moradi

    (Faculty of Construction Engineering, École de Technologie Supérieure, 1100 Notre-Dame St. W, Montreal, QC H3C 1K3, Canada)

  • Gabriel J. Assaf

    (Faculty of Construction Engineering, École de Technologie Supérieure, 1100 Notre-Dame St. W, Montreal, QC H3C 1K3, Canada)

Abstract

Pavement maintenance plays a significant role in megacities. Managing complaints and scheduling road reviews are the two maintenance concerns under the intelligent pavement management system (PMS) plan. In contrast, if the damages are not treated immediately, they will increase over time. By leveraging accurate data from sensors, smart PMS will improve management capability, support sustainability, and drive economic growth in the road network. This research aimed to elaborate on the different modules of an intelligent city pavement network to advance to a sustainable city. First, a 3D mobile light detection and ranging (LiDAR) sensor, accompanied by a camera, was applied as the data collection tool. Although 3D mobile LiDAR data have gained popularity, they lack precise detection of pavement distresses, including cracks. As a result, utilizing RGB imaging may help to detect distresses properly. Two approaches were integrated alongside conducting the data analysis in this paper: (1) ArcGIS pro, developed by Esri Inc., which includes noise removal, digital elevation model (DEM) generation, and pavement and building footprint extraction; (2) the Mechanistic-Empirical Pavement Design Guide (AASHTOWare PMED), which was used to assess site specifications such as traffic, weather, subbase, and current pavement conditions in an effort to design the most appropriate pavement for each road section. For the 3D visualization module, CityEngine (a software from Esri) was used to provide the 3D city model. After implementing the research methodology, we drew the following conclusions: (1) using the AASHTOWare PMED method to make decisions about road maintenance and rehabilitation(M&R) actions can significantly speed up the decision-making process, essentially saving time and money and shortening the project’s duration; and (2) if the road conditions are similar, the smart geographical information system (GIS)-based PMS can make consistent decisions about road M&R strategies, i.e., the interference from human factors is less significant.

Suggested Citation

  • Maryam Moradi & Gabriel J. Assaf, 2023. "Designing and Building an Intelligent Pavement Management System for Urban Road Networks," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1157-:d:1028551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanting Zhang & Zhe Zhu & Wei Ning & Amir M. Fathollahi-Fard, 2022. "An Improved Optimization Algorithm Based on Density Grid for Green Storage Monitoring System," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulin Chang & Yijie Wang & Chao Sun & Peng Zhang & Wenqian Xu, 2023. "Day-to-Day Dynamic Traffic Flow Assignment Model under Mixed Travel Modes Considering Customized Buses," Sustainability, MDPI, vol. 15(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1157-:d:1028551. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.