IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15823-d1277709.html
   My bibliography  Save this article

Drone Lidar Deep Learning for Fine-Scale Bare Earth Surface and 3D Marsh Mapping in Intertidal Estuaries

Author

Listed:
  • Cuizhen Wang

    (Department of Geography, University of South Carolina, Columbia, SC 29208, USA)

  • Grayson R. Morgan

    (Department of Geography, Brigham Young University, Provo, UT 84602, USA)

  • James T. Morris

    (Belle Baruch Institute for Marine & Coastal Sciences, University of South Carolina, Columbia, SC 29208, USA)

Abstract

Tidal marshes are dynamic environments providing important ecological and economic services in coastal regions. With accelerating climate change and sea level rise (SLR), marsh mortality and wetland conversion have been observed on global coasts. For sustainable coastal management, accurate projection of SLR-induced tidal inundation and flooding requires fine-scale 3D terrain of the intertidal zones. The airborne Lidar systems, although successful in extracting terrestrial topography, suffer from high vertical uncertainties in coastal wetlands due to tidal effects. This study tests the feasibility of drone Lidar leveraging deep learning of point clouds on 3D marsh mapping. In an ocean-front, pristine estuary dominated by Spartina alterniflora , drone Lidar point clouds, and in-field marsh samples were collected. The RandLA-Net deep learning model was applied to classify the Lidar point cloud to ground, low vegetation, and high vegetation with an overall accuracy of around 0.84. With the extracted digital terrain model and digital surface model, the cm-level bare earth surfaces and marsh heights were mapped. The bare earth terrain reached a vertical accuracy (root-mean-square error, or RMSE) of 5.55 cm. At the 65 marsh samples, the drone Lidar-extracted marsh height was lower than the in-field height measurements. However, their strongly significantly linear relationship (Pearson’s r = 0.93) reflects the validity of the drone Lidar for measuring marsh canopy height. The adjusted Lidar-extracted marsh height had an RMSE of 0.12 m. This experiment demonstrates a multi-step operational procedure to deploy drone Lidar for accurate, fine-scale terrain and 3D marsh mapping, which provides essential base layers for projecting wetland inundation in various climate change and SLR scenarios.

Suggested Citation

  • Cuizhen Wang & Grayson R. Morgan & James T. Morris, 2023. "Drone Lidar Deep Learning for Fine-Scale Bare Earth Surface and 3D Marsh Mapping in Intertidal Estuaries," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15823-:d:1277709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15823/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15823-:d:1277709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.