IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15419-d1270302.html
   My bibliography  Save this article

Improved Capacitance of Electropolymerized Aniline Using Magnetic Fields

Author

Listed:
  • William T. McLeod

    (Department of Chemistry, Washington State University, Pullman, WA 99164, USA)

  • Anjaiah Sheelam

    (Department of Chemistry, Washington State University, Pullman, WA 99164, USA)

  • Aspen K. Kroiss

    (Department of Chemistry, Washington State University, Pullman, WA 99164, USA)

  • Jeffrey G. Bell

    (Department of Chemistry, Washington State University, Pullman, WA 99164, USA)

Abstract

With the rise in intermittent energy production methods and portable electronics, energy storage devices must continue to improve. Supercapacitors are promising energy storage devices that are known for their rapid charging and discharging, but poor energy density. Experimentally, one can improve the energy density by improving the operating cell voltage and/or improving the overall capacitance, which have traditionally been achieved using difficult, complicated, or expensive syntheses involving additional chemicals or many steps. In this work, we demonstrate a method to improve the capacitance of electropolymerized polyaniline (PANI, a conductive polymer common in supercapacitor applications) with zero additional energy input or chemical additives: the use of a permanent magnet. Using a pulsed-potential polymerization method, we show that the inclusion of a 530 mT magnetic field, placed directly under the surface of the working electrode during electropolymerization, can result in a PANI film with a capacitance of 190.6 mF; compare this to the same polymerization performed in the absence of a magnetic field, which has a significantly lower capacitance of 109.7 mF. Electrochemical impedance spectroscopy indicates that PANIs formed in the presence of magnetic fields demonstrate improved capacitor behavior, as well as lower internal resistance, when compared to PANIs formed in the absence of magnetic fields. To probe the performance and stability of PANI films synthesized in the presence and absence of magnetic fields, galvanostatic charge–discharge was completed for symmetric capacitor configurations. Interestingly, the PANI films formed in the presence of 530 mT magnetic fields maintained their capacitance for over 75,000 cycles, whereas the PANI films formed in the absence of magnet fields suffered serious capacitance losses after only 29,000 cycles. Furthermore, it is shown that performing the polymerization in magnetic fields results in a higher-capacitance polymer film than what is achieved using other methods of forced convection (i.e., mechanical stirring) and outperforms the expected capacitance (based on yield) by 13%, suggesting an influence beyond the magnetohydrodynamic effect.

Suggested Citation

  • William T. McLeod & Anjaiah Sheelam & Aspen K. Kroiss & Jeffrey G. Bell, 2023. "Improved Capacitance of Electropolymerized Aniline Using Magnetic Fields," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15419-:d:1270302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15419/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15419-:d:1270302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.