IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i21p15417-d1270239.html
   My bibliography  Save this article

Two-Way Slab Punching Shear Resistance: Experimental Insights into Basalt-FRP Bar as Flexural Reinforcement

Author

Listed:
  • Brwa Salihi

    (Civil Engineering Department, College of Engineering, Salahaddin University, Erbil 44001, Kurdistan Region, Iraq)

  • Feirusha Hamad

    (Civil Engineering Department, College of Engineering, Salahaddin University, Erbil 44001, Kurdistan Region, Iraq)

Abstract

This study seeks to experimentally evaluate the punching shear performance of two-way concrete slabs reinforced with conventional steel and basalt fiber-reinforced polymer (basalt-FRP) bars subjected to punching loading condition. Basalt-FRP bars offer high tensile strength and corrosion resistance but are understudied in two-way concrete slabs concerning punching shear. This study aims to fill this gap, with key implications for future structural design considerations. To achieve the objectives of the study, six large-scale square slabs were fabricated and subjected to a concentric load until failure. The parameters of the experiment included are the type of reinforcement used (either basalt-FRP or steel), the percentage of basalt-FRP used (ranging from 0.88% to 1.77%), the size of the basalt-FRP bars used (either 16 or 12 mm), and the concrete’s compressive strength (25, 30, and 35 MPa). The findings from the tests showed that incorporating basalt-FRP bars with one-quarter equivalent axial stiffness ( ρ ( E f / E s ) ) to that of steel significantly enhanced the punching shear resistance of flat slabs, achieving approximately 65% of the capacity observed in steel-reinforced control sample. Moreover, increasing the amount of basalt-FRP bar reinforcement to half of the equivalent axial stiffness of steel had a substantial effect in improving shear strength, reaching approximately 89% of the capacity observed in the steel-reinforced specimen and concurrently reducing deflection during the failure. Additionally, the reinforcement type and concrete compressive strength played a crucial role in determining the ultimate load, failure modes, and crack propagation patterns. The study reveals discrepancies between experimental results and existing models for punching shear in FRP-reinforced slabs. Certain prevalent models prove to be conservative in their estimates, while others offer more accurate predictions, indicating the need for comprehensive model refinement. The investigation found that one model, encompassing the majority of variables affecting punching shear, exhibited the highest level of precision, with a slight adjustment recommended to enhance its accuracy further. This study suggests a sustainable, more durable way to reinforce concrete in bridges and high-rise buildings, potentially improving construction efficiency, enhanced service life, and potential updates to building codes.

Suggested Citation

  • Brwa Salihi & Feirusha Hamad, 2023. "Two-Way Slab Punching Shear Resistance: Experimental Insights into Basalt-FRP Bar as Flexural Reinforcement," Sustainability, MDPI, vol. 15(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15417-:d:1270239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/21/15417/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/21/15417/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15417-:d:1270239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.