IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14278-d1248864.html
   My bibliography  Save this article

Study on Large Deformation Characteristics and Secondary Lining Supporting Time of Tunnels in Carbonaceous Schist Stratum under High Geo-Stress

Author

Listed:
  • Yinjun Tan

    (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
    Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

  • Binke Chen

    (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
    Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

  • Zheng Liu

    (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
    Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

Abstract

The deformation characteristics and the timing for secondary lining support in high geo-stress soft rock tunnels have drawn significant attention. In carbonaceous shale formations, tunnel construction deformations are very pronounced under construction disturbances due to the development of joints, dense fractures, and poor interlayer bonding. With the Xishuangbanna tunnel as our research backdrop, this study meticulously analyzed the deformation patterns and characteristics inherent to high geo-stress tunnels constructed within carbonaceous schist formations. Employing a comprehensive approach involving full displacement analysis and on-site construction mechanics testing, we utilized the displacement release rate and structural safety factors as key indicators to determine the secondary lining supporting time. Employing this innovative approach, we successfully identified the ideal junctures for implementing secondary lining support in tunnels excavated through high geo-stress carbonaceous schist. The research findings indicate that the primary damage modes in high geo-stress carbonaceous schist tunnels are initial support failure and extensive early support deformation. These vulnerabilities are primarily attributed to weak and fragmented strata, elevated ground stress levels, and inadequate support strength. During the early stages of tunnel construction, substantial deformations are observed, exhibiting high rates of change. Horizontal convergence, notably, significantly surpasses the settlement at the tunnel’s crown. When employing the three-bench method for construction, the deformation occurring before the excavation of the middle bench contributes the most to the total deformation monitored, whereas the deformation generated after the excavation of the inverted arch constitutes a minor proportion. The tunnel’s crown and invert experience tension while the secondary lining undergoes compression. The internal forces are most significant at the tunnel’s hance and knee, with the left tunnel knee being the weakest section of the secondary lining. The findings of our study are poised to guide the design and execution of tunnels constructed within high geo-stress carbonaceous schist formations.

Suggested Citation

  • Yinjun Tan & Binke Chen & Zheng Liu, 2023. "Study on Large Deformation Characteristics and Secondary Lining Supporting Time of Tunnels in Carbonaceous Schist Stratum under High Geo-Stress," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14278-:d:1248864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14278/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14278-:d:1248864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.