IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14224-d1248053.html
   My bibliography  Save this article

Mechanical Performance of Mortars with Partial Replacement of Cement by Aluminum Dross: Inactivation and Particle Size

Author

Listed:
  • Daniel Parra-Molina

    (Department of Civil and Industrial Engineering, Faculty of Engineering and Sciences, Pontificia Universidad Javeriana Cali, Calle 18# 118–250, Santiago de Cali 760031, Colombia)

  • Manuel Alejandro Rojas-Manzano

    (Department of Civil and Industrial Engineering, Faculty of Engineering and Sciences, Pontificia Universidad Javeriana Cali, Calle 18# 118–250, Santiago de Cali 760031, Colombia)

  • Adriana Gómez-Gómez

    (Department of Civil and Industrial Engineering, Faculty of Engineering and Sciences, Pontificia Universidad Javeriana Cali, Calle 18# 118–250, Santiago de Cali 760031, Colombia)

  • Mario Fernando Muñoz-Vélez

    (Department of Civil and Industrial Engineering, Faculty of Engineering and Sciences, Pontificia Universidad Javeriana Cali, Calle 18# 118–250, Santiago de Cali 760031, Colombia)

  • Aníbal Maury-Ramírez

    (Department of Civil and Industrial Engineering, Faculty of Engineering and Sciences, Pontificia Universidad Javeriana Cali, Calle 18# 118–250, Santiago de Cali 760031, Colombia
    Architecture Department, Faculty of Design Sciences, University of Antwerp, Mutsaardstraat 29, 2000 Antwerp, Belgium)

Abstract

Although the use of primary aluminum dross as cement replacement has shown promising results in mortars and concretes, there is a knowledge gap between the effect of the secondary dross inactivation process and particle sizes on the mechanical properties and consistency. So, by using X-ray diffraction, laser granulometry, and scanning electron microscopy, this article describes first the inactivation process applied to a secondary aluminum dross. Second, this manuscript presents the fresh and hardened properties of mortar mixes containing 5, 10, and 20% inactivated secondary aluminum dross with three different particle sizes (i.e., fine, intermediate, and coarse). Mortar flow test results indicate that compressive and flexural strengths of mixes containing up to 20% fine and intermediate aluminum dross as cement replacement were satisfactory, respectively. These results have the potential to reduce the environmental and health impacts caused by cement production and secondary aluminum dross disposal, respectively. Moreover, the durability aspects of the mortar mixes, as well as the effectivity of the investigated inactivation process, are identified as future research topics.

Suggested Citation

  • Daniel Parra-Molina & Manuel Alejandro Rojas-Manzano & Adriana Gómez-Gómez & Mario Fernando Muñoz-Vélez & Aníbal Maury-Ramírez, 2023. "Mechanical Performance of Mortars with Partial Replacement of Cement by Aluminum Dross: Inactivation and Particle Size," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14224-:d:1248053
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aníbal Maury-Ramírez & Danny Illera-Perozo & Jaime A. Mesa, 2022. "Circular Economy in the Construction Sector: A Case Study of Santiago de Cali (Colombia)," Sustainability, MDPI, vol. 14(3), pages 1-17, February.
    2. Ana María Bravo-German & Iván Daniel Bravo-Gómez & Jaime A. Mesa & Aníbal Maury-Ramírez, 2021. "Mechanical Properties of Concrete Using Recycled Aggregates Obtained from Old Paving Stones," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aníbal Maury-Ramírez & Nele De Belie, 2023. "Environmental and Economic Assessment of Eco-Concrete for Residential Buildings: A Case Study of Santiago de Cali (Colombia)," Sustainability, MDPI, vol. 15(15), pages 1-14, August.
    2. Nuri Cihan Kayaçetin & Chiara Piccardo & Alexis Versele, 2022. "Social Impact Assessment of Circular Construction: Case of Living Lab Ghent," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    3. Anna M. Grabiec & Jeonghyun Kim & Andrzej Ubysz & Pilar Bilbao, 2021. "Some Remarks towards a Better Understanding of the Use of Concrete Recycled Aggregate: A Review," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    4. Aníbal Maury-Ramírez & Danny Illera-Perozo & Jaime A. Mesa, 2022. "Circular Economy in the Construction Sector: A Case Study of Santiago de Cali (Colombia)," Sustainability, MDPI, vol. 14(3), pages 1-17, February.
    5. Yang Yu & Peihan Wang & Zexin Yu & Gongbing Yue & Liang Wang & Yuanxin Guo & Qiuyi Li, 2021. "Study on the Effect of Recycled Coarse Aggregate on the Shrinkage Performance of Green Recycled Concrete," Sustainability, MDPI, vol. 13(23), pages 1-15, November.
    6. Zhenwen Hu & Zhe Kong & Guisheng Cai & Qiuyi Li & Yuanxin Guo & Dunlei Su & Junzhe Liu & Shidong Zheng, 2021. "Study of the Properties of Full Component Recycled Dry-Mixed Masonry Mortar and Concrete Prepared from Construction Solid Waste," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    7. Prin Boonkanit & Kridchai Suthiluck, 2023. "Developing a Decision-Making Support System for a Smart Construction and Demolition Waste Transition to a Circular Economy," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    8. Omer Bafail, 2022. "A DEMATEL Framework for Modeling Cause-and-Effect Relationships of Inbound Contamination in Single-Stream Recycling Programs," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    9. Mario Fernando Muñoz-Vélez & Kathleen Salazar-Serna & Daniela Escobar-Torres & Manuel Alejandro Rojas-Manzano & Adriana Gómez-Gómez & Aníbal Maury-Ramírez, 2023. "Circular Economy: Adding Value to the Post-Industrial Waste through the Transformation of Aluminum Dross for Cement Matrix Applications," Sustainability, MDPI, vol. 15(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14224-:d:1248053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.