IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p13261-d1232690.html
   My bibliography  Save this article

Study of the Mechanical Properties and Water Stability of Microbially Cured, Coir-Fiber-Reinforced Clay Soil

Author

Listed:
  • Qizhi Hu

    (School of Civil Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
    Hubei Bridge Safety Monitoring Technology and Equipment Technology Engineering Research Center, Wuhan 430068, China)

  • Wensen Song

    (School of Civil Architecture and Environment, Hubei University of Technology, Wuhan 430068, China)

  • Jianwen Hu

    (School of Civil Architecture and Environment, Hubei University of Technology, Wuhan 430068, China)

Abstract

Clay soil is widely distributed in engineering foundations. Because of its poor stability, low load-bearing capacity, and poor water stability, it does not provide a high-quality foundation. Microbial-induced calcium carbonate precipitation (MICP) is a novel soil consolidation technique. The basic principle of this technique is that microorganisms induce calcium carbonate deposition in the soil, solidifying it. The reinforcement treatment of clayey soil via MICP with fiber reinforcement can make full use of the advantages of both techniques to improve the mechanical properties and water stability of the soil. In this study, in order to facilitate engineering applications, bacillus pasteurii liquid was mixed with coconut-fiber-reinforced soil using the mixing method, and a microbial solidification test was carried out on the reinforced clayey soil with fiber contents of 0, 0.2%, 0.4%, and 0.6% (mass ratio). By conducting triaxial consolidation without a drainage test, the calcium carbonate content determination test and the disintegration test were combined with SEM microscopic image analysis to compare and analyze the mechanical properties and water stability of clayey soil under different fiber treatments. The results show the following: (1) The coupling of the two techniques can effectively improve the shear strength of the soil. The shear strength first increased and then decreased with the increase in the fiber content. The optimum fiber content is 0.4%, and the shear strength is 120% higher than that of plain soil. (2) The addition of fiber significantly increased the cohesive force of the clayey soil. In addition, the friction angle was also increased by the synergistic effect of the fiber and calcium carbonate. The cohesive force was increased in the range of 3.2~24.4 kPa, and the internal friction angle was increased in the range of 2.2°~6.4°. (3) As the fiber content increased, the disintegration resistance of the solidified soil was obviously improved, and the disintegration rate decreased with the increase in fiber content. When the fiber content was 0.6%, the final disintegration rate was the lowest. (4) Fiber reinforcement increased the colonization space of the microorganisms and improved the deposition efficiency and yield of the calcium carbonate, and the cementing effect of the calcium carbonate promoted fiber reinforcement.

Suggested Citation

  • Qizhi Hu & Wensen Song & Jianwen Hu, 2023. "Study of the Mechanical Properties and Water Stability of Microbially Cured, Coir-Fiber-Reinforced Clay Soil," Sustainability, MDPI, vol. 15(17), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13261-:d:1232690
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/13261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/13261/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammet Cinar, 2024. "Utilization of Earthquake Demolition Wastes and Afşin–Elbistan Fly Ash for Soil Improvement after the Kahramanmaraş Earthquake (6 February 2023)," Sustainability, MDPI, vol. 16(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:13261-:d:1232690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.