IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12613-d1221255.html
   My bibliography  Save this article

The Flow Law of Brine and Sediment Particles in Gas-Driven Brine Drainage in the Sediments of Salt Cavern Gas Storage

Author

Listed:
  • Yi Zhang

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Jun Lu

    (Science and Technology Information Center of West-East Gas Transmission Co., Ltd., Shanghai 200122, China)

  • Jun Li

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Yan Liu

    (PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China)

  • Erdong Yao

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China)

Abstract

The geological resources of salt cavern gas storage in China are mostly complex layered salt beds with many thin inter-layers and high insoluble matter content. In the process of cavity-building by water-solution method, the insoluble matters in salt layers and inter-layers are peeled off and deposited at the bottom of salt cavern, occupying more than one-third of the whole cavity volume. These sediments have a large pore volume and strong compressibility, and they are filled with brine; as a result, they have great potential for gas storage. The research on the flow law of brine and sediment particles in gas-driven brine drainage in the sediments of salt caverns is the basis of utilizing the void space of sediments for gas storage. In this paper, salt cores of salt cavern gas storage wells in the Jintan District were selected, and the physical characteristics of insoluble sediments of the salt cores were analyzed. Then, a laboratory simulation device and experimental method of the gas-driven brine drainage were presented. Using artificial composite sediments in the experimental device, the following was tested: (i) the flow rates of brine and particles in the vicinity of the brine drain pipe in the sediments under different nitrogen displacement pressures, (ii) the relationship between the sand extraction amount and nitrogen displacement pressure of different brine drain pipes, (iii) the sand extraction amount of different sizes of particles with brine drain time, (iv) the cumulative sand extraction amount of different brine drain pipes, and (v) the effect of brine flow rate on the sand extraction amount. The results show that quartz, plagioclase, and ankerite account for 45–94% and clay accounts for 3.3–14.4% of the insoluble minerals of the salt cores from the Jintan District. The particle size distribution of the sediments ranges from 0.04 mm to 6 mm and can be divided into four ranges: <0.5 mm, 0.5 mm~2 mm, 2 mm~4 mm, and >4 mm. The mass percentage of each range is 37.9%, 36.5%, 17%, and 8.6%, respectively. There is a threshold pressure of the gas-driven brine drainage, where the larger the diameter of the sieve hole, the lower the threshold pressure, and the easier the pipe is to sand out. The diameter of the sieve hole has a great influence on the flow rate of the sediment particles near the brine drain pipe. The increase in nitrogen displacement pressure has a positive correlation with the flow rate of sediments near the pipe with 5 mm diameter sieve holes, but has little effect on the flow rate of sediments near pipes with 1.5 mm or 0.5 mm diameter sieve holes. The sand extraction amount is affected by factors such as the nitrogen displacement pressure, diameter of sieve hole, brine drain time, and brine flow rate in the process of gas-driven brine drainage. A higher nitrogen displacement pressure and brine flow rate lead to more sand extraction. A screen pipe with 1 mm diameter sieve holes is suggested to be used for sand control, the sieve holes are recommended to be machined in the shape of a trumpet with a small inlet section (i.e., 1 mm) and a large outlet end (i.e., 1.5 mm), and the brine flow rate is suggested to be about 30 m 3 /h when the brine removal is carried out in the sediments of salt cavern, which depends on the actual operation on site.

Suggested Citation

  • Yi Zhang & Jun Lu & Jun Li & Yan Liu & Erdong Yao, 2023. "The Flow Law of Brine and Sediment Particles in Gas-Driven Brine Drainage in the Sediments of Salt Cavern Gas Storage," Sustainability, MDPI, vol. 15(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12613-:d:1221255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Zhang & Kun Zhang & Jun Li & Yang Luo & Li-Na Ran & Lian-Qi Sheng & Er-Dong Yao, 2023. "Study on Secondary Brine Drainage and Sand Control Technology of Salt Cavern Gas Storage," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12613-:d:1221255. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.