IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p12058-d1211906.html
   My bibliography  Save this article

A Non-Isolated High Voltage Gain DC–DC Converter Suitable for Sustainable Energy Systems

Author

Listed:
  • Mamdouh L. Alghaythi

    (Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia)

Abstract

A non-isolated high gain DC–DC converter with magnetic coupling and a VM circuit is proposed in this study. By the use of the appropriate coupled inductor turn ratio, the output voltage of the recommended topology can be raised. The VM circuit is used to boost the voltage gain even further as well as to clamp the voltage spike across the switch, which results in a lower voltage on the switch. As a result, a MOSFET switch with a lower ON-state resistance ( R DS-ON ) is used which, in turn, causes the conduction losses to be reduced and the entire system efficiency to be raised. Another advantage of the proposed structure is the ZCS of the diodes, which reduces the voltage drop losses caused by the regenerative diodes. The function modes analysis and the theoretical equations are accomplished. A comparison survey with other prior works is being developed to investigate the competency of the proposed converter. Based on this, the higher voltage gain and efficiency as well as the lower voltage stress on the semiconductors can be achieved by the proposed converter compared to the other converters. The effectiveness of the proposed converter is confirmed by the experimental results at a laboratory-scale operating under 150 V output voltage with a 96% efficiency at the 150 W full load and a 25 kHz switching frequency.

Suggested Citation

  • Mamdouh L. Alghaythi, 2023. "A Non-Isolated High Voltage Gain DC–DC Converter Suitable for Sustainable Energy Systems," Sustainability, MDPI, vol. 15(15), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12058-:d:1211906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/12058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/12058/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:12058-:d:1211906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.