IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11046-d1194275.html
   My bibliography  Save this article

Assessment of Vinca rosea (Apocynaceae) Potentiality for Remediation of Crude Petroleum Oil Pollution of Soil

Author

Listed:
  • Ahmad K. Hegazy

    (Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt)

  • Zahra S. Hussein

    (Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 11281, Egypt)

  • Nermen H. Mohamed

    (Egyptian Petroleum Research Institute, Cairo 11727, Egypt)

  • Gehan Safwat

    (Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 11281, Egypt)

  • Mohamed A. El-Dessouky

    (Chemistry Department, Faculty of Science, Biochemistry Division, Cairo University, Giza 12613, Egypt)

  • Ilinca Imbrea

    (Forestry Department, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timisoara, 300645 Timisoara, Romania)

  • Florin Imbrea

    (Crop Science Department, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, 300645 Timisoara, Romania)

Abstract

Petroleum oil pollution is a worldwide problem that results from the continuous exploration, production, and consumption of oil and its products. Petroleum hydrocarbons are produced as a result of natural or anthropogenic practices, and their common source is anthropogenic activities, which impose adverse effects on the ecosystem’s nonliving and living components including humans. Phytoremediation of petroleum hydrocarbon-polluted soils is an evolving, low-cost, and effective alternative technology to most traditional remediation methods. The objective of this study is to evaluate the phytoremediation potentiality of Vinca rosea for crude oil-contaminated soil by understanding its properties and involvement in the enhanced degradation of crude oil. The remediation potentiality was determined by evaluating the total petroleum hydrocarbon degradation percentage (TPH%) and changes in the molecular type composition of saturated and aromatic hydrocarbon fractions. TPH% was estimated gravimetrically, and changes in the molecular type composition of saturated and aromatic fractions were measured using gas chromatography and high-performance liquid chromatography, respectively. Sulfur concentration was measured using X-ray fluorescence. Cadmium and lead quantification was measured using Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results revealed that V. rosea enhanced total petroleum hydrocarbon (TPH) degradation and altered the molecular composition of the crude oil. The saturated hydrocarbons increased and the aromatic hydrocarbons decreased. The saturated hydrocarbon fraction in the crude oil showed a wider spectrum of n-paraffin peaks than the oil extracted from unplanted and V. rosea -planted soils. Polyaromatic hydrocarbon degradation was enhanced in the presence of V. rosea , which was reflected in the increase of monoaromatic and diaromatic constituents. This was parallel to the increased sulfur levels in planted soil. The determination of sulfur and heavy metal content in plant organs indicated that V. rosea can extract and accumulate high amounts from polluted soils. The ability of V. rosea to degrade TPH and alter the composition of crude petroleum oil by decreasing the toxicity of polyaromatic hydrocarbons in soil, as well as its capability to absorb and accumulate sulfur and heavy metals, supports the use of plant species for the phytoremediation of crude oil-polluted sites.

Suggested Citation

  • Ahmad K. Hegazy & Zahra S. Hussein & Nermen H. Mohamed & Gehan Safwat & Mohamed A. El-Dessouky & Ilinca Imbrea & Florin Imbrea, 2023. "Assessment of Vinca rosea (Apocynaceae) Potentiality for Remediation of Crude Petroleum Oil Pollution of Soil," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11046-:d:1194275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jong-Su Seo & Young-Soo Keum & Qing X. Li, 2009. "Bacterial Degradation of Aromatic Compounds," IJERPH, MDPI, vol. 6(1), pages 1-32, January.
    2. Aya A. Mostafa & Rehab M. Hafez & Ahmad K. Hegazy & Azza M. Abd-El Fattah & Nermen H. Mohamed & Yasser M. Mustafa & Adil A. Gobouri & Ehab Azab, 2021. "Variations of Structural and Functional Traits of Azolla pinnata R. Br. in Response to Crude Oil Pollution in Arid Regions," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fayun Li & Meixia Lin, 2020. "Synthesis of Biochar-Supported K-doped g-C 3 N 4 Photocatalyst for Enhancing the Polycyclic Aromatic Hydrocarbon Degradation Activity," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    2. Alexis Nzila & Musa M. Musa, 2020. "Current Status of and Future Perspectives in Bacterial Degradation of Benzo[a]pyrene," IJERPH, MDPI, vol. 18(1), pages 1-24, December.
    3. Xue-Qin Tao & Gui-Ning Lu & Jie-Ping Liu & Ting Li & Li-Ni Yang, 2009. "Rapid Degradation of Phenanthrene by Using Sphingomonas sp. GY2B Immobilized in Calcium Alginate Gel Beads," IJERPH, MDPI, vol. 6(9), pages 1-11, September.
    4. Lei Zhao & Mengying Zhou & Yuanyuan Zhao & Jiawen Yang & Qikun Pu & Hao Yang & Yang Wu & Cong Lyu & Yu Li, 2022. "Potential Toxicity Risk Assessment and Priority Control Strategy for PAHs Metabolism and Transformation Behaviors in the Environment," IJERPH, MDPI, vol. 19(17), pages 1-25, September.
    5. Alexis Nzila & Musa M. Musa & Emmanuel Afuecheta & Assad Al-Thukair & Saravanan Sankaran & Lei Xiang & Qing X. Li, 2023. "Benzo[A]Pyrene Biodegradation by Multiple and Individual Mesophilic Bacteria under Axenic Conditions and in Soil Samples," IJERPH, MDPI, vol. 20(3), pages 1-14, January.
    6. Alexis Nzila, 2018. "Current Status of the Degradation of Aliphatic and Aromatic Petroleum Hydrocarbons by Thermophilic Microbes and Future Perspectives," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    7. Jin Liao & Zhen Liu & Cuiying Zhou & Qingxiu Zhang, 2022. "Disintegration Resistance of Steep-Rocky-Slope Wall-Hanging Soil Based on High-Performance Ester Materials," Sustainability, MDPI, vol. 14(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11046-:d:1194275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.