IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9456-d1169488.html
   My bibliography  Save this article

Green Synthesis of Gold and Silver Nanoparticles Using Invasive Alien Plant Parthenium hysterophorus and Their Antimicrobial and Antioxidant Activities

Author

Listed:
  • Abrha Mengstu Leyu

    (Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
    Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia)

  • Siraye Esubalew Debebe

    (Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
    Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia)

  • Archana Bachheti

    (Department of Environment Science, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India)

  • Yashwant S. Rawat

    (Department of Wood Technology Management, Faculty of Civil Technology, Technical and Vocational Training Institute (TVTI), Addis Ababa P.O. Box 190310, Ethiopia)

  • Rakesh Kumar Bachheti

    (Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
    Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia)

Abstract

Due to the high energy demands and environmental hazards of physical and chemical methods, it is now essential to produce nanoparticles using plant sources as reducing and stabilizing agents. In this study, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were biosynthesized using an aqueous extract of Parthenium hysterophorus aerials as a reducing and stabilizing agent. The synthesized nanoparticles were characterized using UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and transmission electron Microscopy (TEM). UV–Vis spectroscopy indicates that the peaks of AgNPs and AuNPs are at 422 and 538 nm, respectively. The results of the DLS analysis showed that both Au and AgNPs are monodispersed and stable and have mean hydrodynamic sizes of 53.55 nm and 68.12 nm, respectively. According to an XRD analysis, the generated AgNPs and AuNPs are face-centered cubic crystals with average crystalline diameters of 33.4 nm and 30.5 nm, respectively. TEM image depicted that the synthesized NPs mainly have spherical shapes with particle size in the range of 3.41–14.5 nm for AuNPs and 5.57–26.3 nm for AgNPs. These biologically produced AuNPs and AgNPs were investigated for their antibacterial, antifungal, and antioxidant effects. Both AuNPs and AgNPs were found to strongly influence the growth of bacterial pathogens, with a maximum zone of 22.3 and 19.7 mm in Escherichia coli and a minimum zone of 11.7 and 10.3 mm in Salmonella enterica , respectively. The synthesized AuNPs and AgNPs reduce the numbers of viable fungi by 51.06% and 47.87%, respectively. The DPPH (2,2-diphenyl-1-picrylhydrazyl) assay revealed that the synthesized AuNPs and AgNPs have significant radical scavenging ability with 88.75% and 86.25% inhibition and 33.62 μg/mL and 42.86 μg/mL of IC 50 , respectively. Therefore, an aqueous extract of aerial parts of P. hysterophorus can be a suitable precursor for synthesizing AuNPs and AgNPs, with numerous applications. Due to their smaller size, AuNPs have better antimicrobial and antioxidant activities than AgNPs. This study supports the conservation by a utilization strategy of invasive alien plant species control and management (such as P. hysterophorus ) for biodiversity conservation and environmental sustainability.

Suggested Citation

  • Abrha Mengstu Leyu & Siraye Esubalew Debebe & Archana Bachheti & Yashwant S. Rawat & Rakesh Kumar Bachheti, 2023. "Green Synthesis of Gold and Silver Nanoparticles Using Invasive Alien Plant Parthenium hysterophorus and Their Antimicrobial and Antioxidant Activities," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9456-:d:1169488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9456/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9456/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Rafi Shaik & Mujeeb Khan & Mufsir Kuniyil & Abdulrahman Al-Warthan & Hamad Z. Alkhathlan & Mohammed Rafiq H. Siddiqui & Jilani P. Shaik & Anis Ahamed & Adeem Mahmood & Merajuddin Khan & Syed , 2018. "Plant-Extract-Assisted Green Synthesis of Silver Nanoparticles Using Origanum vulgare L. Extract and Their Microbicidal Activities," Sustainability, MDPI, vol. 10(4), pages 1-14, March.
    2. Yashwant S. Rawat & Vikram S. Negi & Shreekar Pant & Rakesh Kumar Bachheti, 2023. "Collaborative Adaptive Stewardship for Invasive Alien Plants Management in South Africa," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abd El-Latif Hesham & Sabreen IH Salem & Karam A Amein & Rania Faisel & Mahmoud A El-Rawy, 2019. "Biosynthesized Silver Nanoparticles using Schwanniomyces Vanrijiae and its Antimicrobial Activity Against Pathogens," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 21(1), pages 15515-15521, August.
    2. Alaa H. Alkhathlan & Hessah A. AL-Abdulkarim & Mujeeb Khan & Merajuddin Khan & Abdullah AlDobiy & Musaed Alkholief & Aws Alshamsan & Hamad Z. Alkhathlan & M. Rafiq H. Siddiqui, 2020. "Ecofriendly Synthesis of Silver Nanoparticles Using Aqueous Extracts of Zingiber officinale (Ginger) and Nigella sativa L. Seeds (Black Cumin) and Comparison of Their Antibacterial Potential," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    3. Yashwant S. Rawat & G. S. Singh & Anteneh T. Tekleyohannes, 2024. "Optimizing the Benefits of Invasive Alien Plants Biomass in South Africa," Sustainability, MDPI, vol. 16(5), pages 1-17, February.
    4. Tayyaba Shahzadi & Saima Sanaullah & Tauheeda Riaz & Maria Zaib & Amina Kanwal & Hifzah Jabeen, 2021. "Kinetics and thermodynamic studies of organic dyes removal on adsorbent developed from Viola tricolor extract and evaluation of their antioxidant activity," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17923-17941, December.
    5. Malvika Mehta & Chitrakshi Chopra & Srinivas Sistla & Indu Bhushan, 2023. "Potential of Biosynthesized Silver and Zinc Oxide Nanoparticles from Carissa opaca Extracts for Antimicrobial Activity and Wastewater Treatment," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    6. M. Asimuddin & Mohammed Rafi Shaik & Neeshat Fathima & M. Shaistha Afreen & Syed Farooq Adil & Mohammed Rafiq H. Siddiqui & Kaiser Jamil & Mujeeb Khan, 2020. "Study of Antibacterial Properties of Ziziphus mauritiana based Green Synthesized Silver Nanoparticles against Various Bacterial Strains," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    7. S M Rakib-Uz-Zaman & Ehsanul Hoque Apu & Mohammed Nimeree Muntasir & Sadrina Afrin Mowna & Mst Gitika Khanom & Shah Saif Jahan & Nahid Akter & M. Azizur R. Khan & Nadia Sultana Shuborna & Shahriar Moh, 2022. "Biosynthesis of Silver Nanoparticles from Cymbopogon citratus Leaf Extract and Evaluation of Their Antimicrobial Properties," Challenges, MDPI, vol. 13(1), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9456-:d:1169488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.