IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8931-d1161742.html
   My bibliography  Save this article

Soil Erosion Due to Defective Pipes: A Hidden Hazard Beneath Our Feet

Author

Listed:
  • Pooya Dastpak

    (Department of Civil Environmental & Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA)

  • Rita L. Sousa

    (Department of Civil Environmental & Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA)

  • Daniel Dias

    (Laboratory 3SR, CNRS UMR 5521, Grenoble Alpes University, 38000 Grenoble, France)

Abstract

Sinkholes are a significant underground hazard that threatens infrastructure and lives and sometimes results in fatalities. The annual cost of sinkhole damages exceeds $300 million, although this estimate is likely underestimated due to the need for national tracking. Sinkholes can also alter natural drainage patterns, leading to increased flood risk. While natural sinkholes occur, those in urban areas are predominantly manmade, caused by soil erosion from defective pipes, typically due to aging. Climate change, storm surges, and urbanization have accelerated subsidence in urban environments, posing greater risks to critical infrastructure and densely populated areas. Extensive research has focused on soil erosion in dams; however, this knowledge does not necessarily apply to erosion through orifices, where gravity and other factors play significant roles. This paper presents a critical literature review on internal soil erosion due to defective pipes (SEDP). The review highlights that hydraulic loading, backfill type, and pipe conditions (defect shape, size, and depth) influence SEDP. Key findings from experiments and numerical studies are summarized, while mechanisms and knowledge gaps are identified. However, it is concluded that the current understanding in this field remains limited, underscoring the urgent need for further experimental and numerical research to expand the knowledge base on SEDP.

Suggested Citation

  • Pooya Dastpak & Rita L. Sousa & Daniel Dias, 2023. "Soil Erosion Due to Defective Pipes: A Hidden Hazard Beneath Our Feet," Sustainability, MDPI, vol. 15(11), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8931-:d:1161742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haibat Ali & Jae-ho Choi, 2019. "Risk Prediction of Sinkhole Occurrence for Different Subsurface Soil Profiles due to Leakage from Underground Sewer and Water Pipelines," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    2. Kiyeon Kim & Joonyoung Kim & Tae-Young Kwak & Choong-Ki Chung, 2018. "Logistic regression model for sinkhole susceptibility due to damaged sewer pipes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 765-785, September.
    3. Rita Tufano & Luigi Guerriero & Mariagiulia Annibali Corona & Giuseppe Bausilio & Diego Di Martire & Stefania Nisio & Domenico Calcaterra, 2022. "Anthropogenic sinkholes of the city of Naples, Italy: an update," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2577-2608, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyudmila S. Malyukova & Nikita V. Martyushev & Valeriya Valerievna Tynchenko & Viktor V. Kondratiev & Vladimir V. Bukhtoyarov & Vladimir Yu. Konyukhov & Kirill Aleksandrovich Bashmur & Tatyana Aleksan, 2023. "Circular Mining Wastes Management for Sustainable Production of Camellia sinensis (L.) O. Kuntze," Sustainability, MDPI, vol. 15(15), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu-Wei Wang & Ye-Shuang Xu, 2022. "Investigation on the phenomena and influence factors of urban ground collapse in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 1-33, August.
    2. Nhat-Duc Hoang & Quoc-Lam Nguyen & Xuan-Linh Tran, 2019. "Automatic Detection of Concrete Spalling Using Piecewise Linear Stochastic Gradient Descent Logistic Regression and Image Texture Analysis," Complexity, Hindawi, vol. 2019, pages 1-14, July.
    3. Rita Tufano & Luigi Guerriero & Mariagiulia Annibali Corona & Giuseppe Bausilio & Diego Di Martire & Stefania Nisio & Domenico Calcaterra, 2022. "Anthropogenic sinkholes of the city of Naples, Italy: an update," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2577-2608, July.
    4. Jeonghun Lee & Chan Young Park & Seungwon Baek & Seung H. Han & Sungmin Yun, 2021. "Risk-Based Prioritization of Sewer Pipe Inspection from Infrastructure Asset Management Perspective," Sustainability, MDPI, vol. 13(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8931-:d:1161742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.