IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8465-d1153646.html
   My bibliography  Save this article

Effect of Silica Fume on Engineering Performance and Life Cycle Impact of Jute-Fibre-Reinforced Concrete

Author

Listed:
  • Rawaz Kurda

    (Department of Highway and Bridge Engineering, Technical Engineering College, Erbil Polytechnic University, Erbil 44001, Iraq
    Department of Civil Engineering, College of Engineering, Nawroz University, Duhok 42001, Iraq
    CERIS, Civil Engineering, Architecture and Georresources Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal)

Abstract

The brittleness of plain concrete (PC) is a result of its lack of tensile strength and poor resistance to cracking, which in turn limits its potential uses. The addition of dispersed fibres into the binding material has been demonstrated to have a positive impact on the tensile properties of PC. Nevertheless, using new or engineered fibres in concrete significantly increases the overall cost and carbon footprint of concrete. Consequently, the main obstacle in creating environmentally friendly fibre-reinforced concrete is the traditional design process with energy-intensive materials. This study investigated how the engineering properties and life cycle impact of concrete were influenced by varying the volume fractions of jute fibre (JF). The impact of incorporating silica fume (SF) as a partial replacement of Portland cement was also studied. The studied parameters included mechanical behaviour, non-destructive durability indicators, and the life cycle impact of concrete using JF and SF. The efficiency of JF in mechanical performance improved with the increase in age and with the addition of SF. When using both SF and 0.3% JF, there was an improvement of around 28% in the compressive strength (CS). When 0.3% JF was added, in the presence and absence of SF, the splitting tensile strength (STS) improvement was around 20% and 40%, respectively. The addition of JF improved the residual flexural strength (FS) and flexural ductility of PC. The SF addition overcame the drawbacks of the poor resistance of JF-reinforced concrete (JFRC) against water absorption (WA) and rapid chloride ion penetration (RCIP).

Suggested Citation

  • Rawaz Kurda, 2023. "Effect of Silica Fume on Engineering Performance and Life Cycle Impact of Jute-Fibre-Reinforced Concrete," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8465-:d:1153646
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8465/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8465-:d:1153646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.