IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8393-d1152682.html
   My bibliography  Save this article

Impact of Hot Weather Conditions on the Performance of Supplementary Cementitious Materials Concrete

Author

Listed:
  • Yassir M. Abbas

    (Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Galal Fares

    (Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Mohammad Iqbal Khan

    (Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

This study aimed to investigate the strength and permeability properties of binary and ternary systems for producing concrete mixes with a cure time of 7, 28, 90, and 180 days under high ambient temperatures (about 35–45 °C). The key variables were silica fume (SF) and fly ash (FA) and the water-to-binder ratio (0.18 to 0.55) needed for cementitious systems of normal to ultra-high-performance concrete (UHPC). The tests were conducted under BS 1881 and ASTM C 1202. Further, a parametric study was conducted using isoresponse curves and predictive models developed in the study. After 28 days with 5% SF, the SF-binary concrete mixes showed significant gains in compressive strength, while 10% and 15% showed no significant gains. With a water–binder ratio of 0.55, concrete showed slightly higher strength gains than concrete with ratios of 0.16, 0.25, and 0.40. A 5% SF addition to 0.25-based concrete reduced permeability by 70%, which was marginal for 10% and 15%. However, higher SF content did not significantly affect concrete permeability with water–binder ratios of 0.55 and 0.40. The SF-FA ternary cementitious system of UHPC resulted in negligible permeability. With the developed model, the predicted–tested strength and permeability ratio was between 0.96 and 1.01. The isoresponse pattern of permeability changes at 6% SF content, while adding SF increases permeability significantly. The parametric analysis revealed that strength development deteriorates after 120 days regardless of whether SF is added at 10% or 15%.

Suggested Citation

  • Yassir M. Abbas & Galal Fares & Mohammad Iqbal Khan, 2023. "Impact of Hot Weather Conditions on the Performance of Supplementary Cementitious Materials Concrete," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8393-:d:1152682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8393/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8393/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8393-:d:1152682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.