IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8096-d1148248.html
   My bibliography  Save this article

A Joint Computer-Aided Simulation and Water-Energy-Product (WEP) Approach for Technical Evaluation of PVC Production

Author

Listed:
  • Eduardo Aguilar-Vásquez

    (Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Cartagena 130015, Bolivar, Colombia)

  • Miguel Ramos-Olmos

    (Grupo de Investigación en Ciencias Administrativas y Seguridad y Salud en el Trabajo (CIASST), Business Administration Department, Universidad Minuto de Dios-UniMinuto, Cartagena 130001, Bolivar, Colombia)

  • Ángel Darío González-Delgado

    (Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Cartagena 130015, Bolivar, Colombia)

Abstract

Recently, polyvinyl chloride (PVC) has emerged as one of the most widely used polymers on the planet due to its versatile mechanical properties and chemical resistance. Suspension polymerization is the most employed method for its production, owing to its ability to control polymer characteristics and cost-effectiveness. However, issues such as water and energy consumption and management in the process have sparked interest in researching the performance and sustainability of the process. In this study, an approach for the technical evaluation of the PVC production process by suspension is proposed, using 11 indicators related to Water, Energy and Product (WEP), based on technical parameters and process simulation for the diagnosis of the process, framed under sustainability criteria. The simulation included the purification and drying stages of the polymer, along with a monomer recirculation stage. The properties of PVC obtained through the process simulation were over 90% accurate when compared to the literature. The technical analysis found that the process has high performance in the handling of vinyl chloride monomer (VCM) and PVC, with a production yield of 99% and an index of reused unconverted material of 99%. On the other hand, there are opportunities for improvement in the process, related to water usage management, since the indicator of wastewater production was 80% and the fractional water consumption was 1.8 m 3 /t. Regarding energy use, the process exhibits high consumption and an energy-specific intensity of 4682 MJ/t of PVC, but it has a low overall cost due to the use of natural gas in some stages of the process.

Suggested Citation

  • Eduardo Aguilar-Vásquez & Miguel Ramos-Olmos & Ángel Darío González-Delgado, 2023. "A Joint Computer-Aided Simulation and Water-Energy-Product (WEP) Approach for Technical Evaluation of PVC Production," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8096-:d:1148248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8096/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8096-:d:1148248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.