IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7897-d1144819.html
   My bibliography  Save this article

A Convolutional Neural Network Model for Soil Temperature Prediction under Ordinary and Hot Weather Conditions: Comparison with a Multilayer Perceptron Model

Author

Listed:
  • Vahid Farhangmehr

    (Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Juan Hiedra Cobo

    (National Research Council Canada, Ottawa, ON K1A 0R6, Canada)

  • Abdolmajid Mohammadian

    (Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Pierre Payeur

    (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Hamidreza Shirkhani

    (National Research Council Canada, Ottawa, ON K1A 0R6, Canada)

  • Hanifeh Imanian

    (Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

Abstract

Soil temperature is a critical parameter in soil science, agriculture, meteorology, hydrology, and water resources engineering, and its accurate and cost-effective determination and prediction are very important. Machine learning models are widely employed for surface, near-surface, and subsurface soil temperature predictions. The present study employed a properly designed one-dimensional convolutional neural network model to predict the hourly soil temperature at a subsurface depth of 0–7 cm. The annual input dataset for this model included eight hourly climatic features. The performance of this model was assessed using a wide range of evaluation metrics and compared to that of a multilayer perceptron model. A detailed sensitivity analysis was conducted on each feature to determine its importance in predicting the soil temperature. This analysis showed that air temperature had the greatest impact and surface thermal radiation had the least impact on soil temperature prediction. It was concluded that the one-dimensional convolutional model performed better than the multilayer perceptron model in predicting the soil temperature under both normal and hot weather conditions. The findings of this study demonstrated the capability of the model to predict the daily maximum soil temperature.

Suggested Citation

  • Vahid Farhangmehr & Juan Hiedra Cobo & Abdolmajid Mohammadian & Pierre Payeur & Hamidreza Shirkhani & Hanifeh Imanian, 2023. "A Convolutional Neural Network Model for Soil Temperature Prediction under Ordinary and Hot Weather Conditions: Comparison with a Multilayer Perceptron Model," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7897-:d:1144819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanifeh Imanian & Juan Hiedra Cobo & Pierre Payeur & Hamidreza Shirkhani & Abdolmajid Mohammadian, 2022. "A Comprehensive Study of Artificial Intelligence Applications for Soil Temperature Prediction in Ordinary Climate Conditions and Extremely Hot Events," Sustainability, MDPI, vol. 14(13), pages 1-25, July.
    2. Fanhua Yu & Huibowen Hao & Qingliang Li, 2021. "An Ensemble 3D Convolutional Neural Network for Spatiotemporal Soil Temperature Forecasting," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    3. Xike Zhang & Qiuwen Zhang & Gui Zhang & Zhiping Nie & Zifan Gui & Huafei Que, 2018. "A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition," IJERPH, MDPI, vol. 15(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastián Vázquez-Ramírez & Miguel Torres-Ruiz & Rolando Quintero & Kwok Tai Chui & Carlos Guzmán Sánchez-Mejorada, 2023. "An Analysis of Climate Change Based on Machine Learning and an Endoreversible Model," Mathematics, MDPI, vol. 11(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mercedeh Taheri & Helene Katherine Schreiner & Abdolmajid Mohammadian & Hamidreza Shirkhani & Pierre Payeur & Hanifeh Imanian & Juan Hiedra Cobo, 2023. "A Review of Machine Learning Approaches to Soil Temperature Estimation," Sustainability, MDPI, vol. 15(9), pages 1-26, May.
    2. Guodong Wu & Jun Zhang & Heru Xue, 2023. "Long-Term Prediction of Hydrometeorological Time Series Using a PSO-Based Combined Model Composed of EEMD and LSTM," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    3. Hanifeh Imanian & Juan Hiedra Cobo & Pierre Payeur & Hamidreza Shirkhani & Abdolmajid Mohammadian, 2022. "A Comprehensive Study of Artificial Intelligence Applications for Soil Temperature Prediction in Ordinary Climate Conditions and Extremely Hot Events," Sustainability, MDPI, vol. 14(13), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7897-:d:1144819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.