IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p659-d1020277.html
   My bibliography  Save this article

Risk Assessment of Potentially Toxic Elements in Agricultural Soils of Al-Ahsa Oasis, Saudi Arabia

Author

Listed:
  • Talal Alharbi

    (Geology and Geophysics Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Abdelbaset S. El-Sorogy

    (Geology and Geophysics Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

Abstract

Contamination of soil with potentially toxic elements (PTEs) is receiving great attention worldwide due to its apparent toxicity and hazards to local residents. The assessments of soil PTE distribution, sources, and environmental risks are, therefore, the first steps of high-efficiency pollutant degradation and sustainable utilization. The current study used a variety of contamination indicators and multivariate methods to evaluate the environmental risk of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in Al-Ahsa soils in eastern Saudi Arabia. For analysis, 30 surface soil samples were collected from palm fields irrigated with groundwater and treated sewage water. Landsat images of Al-Ahsa indicated an increase in the total vegetative area and the residential area, and a decrease in the bare land area from 1985 to 2021. The average concentrations of PTEs (mg/kg −1 ) were lower than the maximum admissible concentrations and had the following decreasing order: Zn (54.43) > Cr (28.67) > Ni (14.53) > Cu (10.83) > Pb (5.23) > As (2.27) > Hg (0.35) > Cd (0.26). The enrichment factor (EF) findings confirmed that the Al-Ahsa soil is significantly enriched with Hg, moderately to severely enriched with As, and moderately enriched with Cd. The potential ecological risk index (RI) demonstrates a moderate ecological risk, with only certain parts presenting a high risk. The different PTE levels in agricultural soils may be caused partly by the various qualities of groundwater that originate from various aquifers and sewage-treated water. The results of a multivariate analysis showed that most of the anthropogenic sources of Hg, As, and Cd may come from using a lot of fertilizers and insecticides. Levels of the remaining PTEs indicated natural sources from earth crust materials.

Suggested Citation

  • Talal Alharbi & Abdelbaset S. El-Sorogy, 2022. "Risk Assessment of Potentially Toxic Elements in Agricultural Soils of Al-Ahsa Oasis, Saudi Arabia," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:659-:d:1020277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/659/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saad S. Alarifi & Abdelbaset S. El-Sorogy & Khaled Al-Kahtany & Mislat Alotaibi, 2022. "Contamination and Environmental Risk Assessment of Potentially Toxic Elements in Soils of Palm Farms in Northwest Riyadh, Saudi Arabia," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    2. Abdulaziz Abdulrahman AlMulla & Saad Dahlawi & Muhammad Atif Randhawa & Qamar uz Zaman & Yinglong Chen & Turki Kh. Faraj, 2022. "Toxic Metals and Metalloids in Hassawi Brown Rice: Fate during Cooking and Associated Health Risks," IJERPH, MDPI, vol. 19(19), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Song & Feng Zhao & Haiyang Cui & Jingmin Wan & Hui Li, 2023. "Biofuel Ash Aging in Acidic Environment and Its Influence on Cd Immobilization," IJERPH, MDPI, vol. 20(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:659-:d:1020277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.