IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p3766-d777307.html
   My bibliography  Save this article

Effect of Fluid Contact Angle of Oil-Wet Fracture Proppant on the Competing Water/Oil Flow in Sandstone-Proppant Systems

Author

Listed:
  • Ming Wang

    (Department of Petroleum Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA)

  • Boyun Guo

    (Department of Petroleum Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA)

Abstract

Ceramic fracture proppants are extensively used for enhancing the recovery of fossil energy and geothermal energy. Previous work has reported the attracting-oil-repelling-water (AORW) property of oil-wet proppants at the faces of fractures. Because of the lack of a method for measuring the contact angle of proppant packs, the terms water-wet proppant and oil-wet proppant were defined based on observations of liquid droplets on the surfaces of proppant packs without quantitative measurement. An innovative method was developed in this study to determine the contact angles of fracture proppant packs. The effect of the oil contact angle of the oil-wet fracture proppant pack on the competing water/oil flow from sandstone cores to the packs was investigated. It was found that, for a given fracture proppant pack, the sum of the water contact angle and oil contact angle measured in the liquid–air–solid systems is less than 180°, i.e., the two angles are not supplementary. This is believed to be due to the weak wetting capacity of air to the solid surfaces in the liquid–air–solid systems. Both water and oil contact angles should be considered in the classification of wettability of proppant packs. Fracture proppant packs with water contact angles greater than 90° and oil contact angles significantly less than 90° can be considered as oil-wet proppants. Reducing oil contact angles of oil-wet proppants can increase capillary force, promote oil imbibition into the proppant packs, and thus improve the AORW performance of proppants. Fracture proppant packs with water contact angles less than 90° and oil contact angles less than 90° may be considered as mixed-wet proppants. Their AORW performance should be tested in laboratories before they are considered for well fracturing operations.

Suggested Citation

  • Ming Wang & Boyun Guo, 2022. "Effect of Fluid Contact Angle of Oil-Wet Fracture Proppant on the Competing Water/Oil Flow in Sandstone-Proppant Systems," Sustainability, MDPI, vol. 14(7), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3766-:d:777307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/3766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/3766/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3766-:d:777307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.