IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16153-d992317.html
   My bibliography  Save this article

Comparative Study of Geological Hazard Evaluation Systems Using Grid Units and Slope Units under Different Rainfall Conditions

Author

Listed:
  • Shuai Liu

    (Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650032, China)

  • Jieyong Zhu

    (Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650032, China)

  • Dehu Yang

    (Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650032, China)

  • Bo Ma

    (Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650032, China)

Abstract

The selection of evaluation units in geological hazard evaluation systems is crucial for the evaluation results. In an evaluation system, relevant geological evaluation factors are selected and the study area is divided into multiple regular or irregular independent units, such as grids, slopes, and basins. Each evaluation unit, which includes evaluation factor attributes and hazard point distribution data, is placed as an independent individual in a corresponding evaluation model for use in a calculation, and finally a risk index for the entire study area is obtained. In order to compare the influence of the selection of grid units or slope units—two units frequently used in geological hazard evaluation studies—on the accuracy of evaluation results, this paper takes Yuanyang County, Yunnan Province, China, as a case study area. The area was divided into 7851 slope units by the catchment basin method and 12,985,257 grid units by means of an optimal grid unit algorithm. Nine evaluation factors for geological hazards were selected, including elevation, slope, aspect, curvature, land-use type, distance from a fault, distance from a river, engineering geological rock group, and landform type. In order to ensure the objective comparison of evaluation results for geological hazard susceptibility with respect to grid units and slope units, the weighted information model combining the subjective weighting AHP (analytic hierarchy process) and the objective statistical ICM (information content model) were used to evaluate susceptibility with both units. Geological risk evaluation results for collapses and landslides under heavy rain (25–50 mm), rainstorm (50–100 mm), heavy rainstorm (150–250 mm), and extraordinary rainstorm (>250 mm) conditions were obtained. The results showed that the zoning results produced under the slope unit system were better than those produced under the grid unit system in terms of the distribution relationship between hazard points and hazard levels. In addition, ROC (receiver operating characteristic) curves were used to test the results of susceptibility and risk assessments. The AUC (area under the curve) values of the slope unit system were higher than those of the grid unit system. Finally, the evaluation results obtained with slope units were more reasonable and accurate. Compared with the results from an actual geological hazard susceptibility and risk survey, the evaluation results for collapse and landslide geological hazards under the slope unit system were highly consistent with the actual survey results.

Suggested Citation

  • Shuai Liu & Jieyong Zhu & Dehu Yang & Bo Ma, 2022. "Comparative Study of Geological Hazard Evaluation Systems Using Grid Units and Slope Units under Different Rainfall Conditions," Sustainability, MDPI, vol. 14(23), pages 1-24, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16153-:d:992317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrián G. Bruzón & Patricia Arrogante-Funes & Fátima Arrogante-Funes & Fidel Martín-González & Carlos J. Novillo & Rubén R. Fernández & René Vázquez-Jiménez & Antonio Alarcón-Paredes & Gustavo A. Alon, 2021. "Landslide Susceptibility Assessment Using an AutoML Framework," IJERPH, MDPI, vol. 18(20), pages 1-20, October.
    2. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    3. Charalampos Kontoes & Constantinos Loupasakis & Ioannis Papoutsis & Stavroula Alatza & Eleftheria Poyiadji & Athanassios Ganas & Christina Psychogyiou & Mariza Kaskara & Sylvia Antoniadi & Natalia Spa, 2021. "Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data," Land, MDPI, vol. 10(4), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deborah Simon Mwakapesa & Yimin Mao & Xiaoji Lan & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Mapping Using DIvisive ANAlysis (DIANA) and RObust Clustering Using linKs (ROCK) Algorithms, and Comparison of Their Performance," Sustainability, MDPI, vol. 15(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.
    2. Siti Norsakinah Selamat & Nuriah Abd Majid & Mohd Raihan Taha & Ashraf Osman, 2022. "Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia," Land, MDPI, vol. 11(6), pages 1-21, June.
    3. Yimin Li & Xuanlun Deng & Peikun Ji & Yiming Yang & Wenxue Jiang & Zhifang Zhao, 2022. "Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture," IJERPH, MDPI, vol. 19(21), pages 1-24, October.
    4. Xianyu Yu & Tingting Xiong & Weiwei Jiang & Jianguo Zhou, 2023. "Comparative Assessment of the Efficacy of the Five Kinds of Models in Landslide Susceptibility Map for Factor Screening: A Case Study at Zigui-Badong in the Three Gorges Reservoir Area, China," Sustainability, MDPI, vol. 15(1), pages 1-26, January.
    5. Chong Niu & Kebo Ma & Xiaoyong Shen & Xiaoming Wang & Xiao Xie & Lin Tan & Yong Xue, 2023. "Attention-Enhanced Region Proposal Networks for Multi-Scale Landslide and Mudslide Detection from Optical Remote Sensing Images," Land, MDPI, vol. 12(2), pages 1-12, January.
    6. Patricia Arrogante-Funes & Adrián G. Bruzón & Fátima Arrogante-Funes & Rocío N. Ramos-Bernal & René Vázquez-Jiménez, 2021. "Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment," IJERPH, MDPI, vol. 18(22), pages 1-21, November.
    7. Xianmin Wang & Xinlong Zhang & Jia Bi & Xudong Zhang & Shiqiang Deng & Zhiwei Liu & Lizhe Wang & Haixiang Guo, 2022. "Landslide Susceptibility Evaluation Based on Potential Disaster Identification and Ensemble Learning," IJERPH, MDPI, vol. 19(21), pages 1-26, October.
    8. Derya Ozturk & Nergiz Uzel-Gunini, 2022. "Investigation of the effects of hybrid modeling approaches, factor standardization, and categorical mapping on the performance of landslide susceptibility mapping in Van, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2571-2604, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16153-:d:992317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.