IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14155-d957919.html
   My bibliography  Save this article

Experimental Investigation on Fracture Behavior and Mechanical Properties of Red Sandstone Subjected to Freeze–Thaw Cycles

Author

Listed:
  • Xiao-Wu Zhang

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
    School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Jin-Hai Xu

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
    School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Yue Cao

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
    School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Lei Sun

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
    School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Faiz Shaikh

    (School of Civil and Mechanical Engineering, Curtin University, Perth 6016, Australia)

Abstract

The freeze–thaw process plays a dominant role as far as the exploration and development of natural resources in cold regions are concerned. Freeze–thaw cycles can cause frost heaving pressure in the rock matrix and result in micro cracking, which influences its physical and mechanical properties. A series of physical and mechanical tests are performed on red sandstone to investigate the fracture behavior and mechanical properties induced by freeze–thaw cycles. The testing results show that after being treated by freeze–thaw cycles, the mass, density, and P-wave velocity of rocks decrease, while the volume of rocks increases. The peak stress and elastic modulus decrease with the increase in freeze–thaw cycles, while peak strain and Poisson’s rate increase. When 30 MPa confining pressure is applied, the peak stress and elastic modulus of untreated samples reach the maximum values of 92.49 MPa and 12.84 GPa, respectively. However, after being treated by 30 freeze–thaw cycles, the peak strain and Poisson’s rate reach the maximum values of 0.631 % and 0.18, respectively. The development of micro-cracks and the growth of pores induced by frost heaving stress are the main reasons for the deterioration of the mechanical properties of rocks. Confining pressure and freeze–thaw cycles can transfer the rock’s failure mode from tensile to shear and make red sandstone show more ductility features.

Suggested Citation

  • Xiao-Wu Zhang & Jin-Hai Xu & Yue Cao & Lei Sun & Faiz Shaikh, 2022. "Experimental Investigation on Fracture Behavior and Mechanical Properties of Red Sandstone Subjected to Freeze–Thaw Cycles," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14155-:d:957919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14155/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14155-:d:957919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.