IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13494-d946991.html
   My bibliography  Save this article

Flexural Behavior of Portland Cement Mortars Reinforced with Hybrid Blends of Recycled Waste Fibers

Author

Listed:
  • Abdulaziz Alsaif

    (Civil Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia)

  • Mohammad Alshannag

    (Civil Engineering Department, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

Laboratory tests were performed for evaluating the flexural performance of Portland cement mortars reinforced with recycled fibers. The objective was to find the best blend of unsorted recycled post-consumer tire steel fibers (RTSF), and recycled plastic fibers (RPF) for enhancing the flexural behavior and ductility of cement-based composites. Ten mortar mixes containing various blends of RTSF and RPF were cast and tested under a displacement-controlled four-point bending ASTM test. Test results indicate that the mortar mixes reinforced with recycled fibers satisfied the ASTM flow requirements and achieved a flexural response and toughness comparable to the response of similar mixes, containing manufactured steel fibers (MSF) only, at the same fiber dosage. Among the recycled fiber blends investigated, the mix containing 0.5% RTSF and 0.5% RPF (on volume basis) exhibited relatively superior flexural characteristics compared to the mixes reinforced with the same dosage of MSF only. Moreover, the positive synergetic effect of fiber blends on the post-cracking strength and flexural toughness was pronounced at 0.5% RTSF and 0.5% RPF (on volume basis). Hence, as an echo-friendly material, recycled fiber blends of RTSF and RPF could be recommended for enhancing the flexural performance of cement-based composites at a lesser cost.

Suggested Citation

  • Abdulaziz Alsaif & Mohammad Alshannag, 2022. "Flexural Behavior of Portland Cement Mortars Reinforced with Hybrid Blends of Recycled Waste Fibers," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13494-:d:946991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13494/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan Ghanem & Safwan Chahal & Jamal Khatib & Adel Elkordi, 2023. "Experimental and Numerical Investigation of the Flexural Behavior of Mortar Beams Strengthened with Recycled Plastic Mesh," Sustainability, MDPI, vol. 15(7), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13494-:d:946991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.