IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12258-d926562.html
   My bibliography  Save this article

Duncan–Chang E - υ Model Considering the Thixotropy of Clay in the Zhanjiang Formation

Author

Listed:
  • Bin Tang

    (Guangxi Key Laboratory of Geotechnical Mechanics and Engineering, Guilin University of Technology, Guilin 541004, China)

  • Tianli Liu

    (School of Civil and Architectural Engineering, Guilin University of Technology, Guilin 541004, China)

  • Biaohe Zhou

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

Abstract

The clays of the Zhanjiang Formation in the coastal area of Beibu Gulf of China are thixotropic, and the existing constitutive relationship models relevant for clay are incapable of accurately simulating their stress–strain relationships. It is vital to study the changes of mechanical properties of Zhanjiang Formation clay that occur during thixotropy, and to establish a constitutive model considering thixotropy. The varying measures of its shear strength, cohesion, internal friction angle, and initial tangential modulus during thixotropy were investigated by means of triaxial consolidation and drainage tests. Furthermore, the quantitative relationships between the clay’s cohesion, internal friction angle, and initial tangential modulus of the clay and time were examined. This relationship was introduced into the Duncan–Chang model, and a Duncan–Chang model considering the thixotropy of clay was developed. The established model was used to make predictions to assume the validation of the experimental data, and numerical simulations were then carried out. All of the results from the model’s prediction, numerical simulation and experimental measurements were compared against each other in order to verify the reasonableness of the model we had utilized. The results positively demonstrated that: (1) the shear strength, cohesion, angle of internal friction, and initial tangent modulus of the clay gradually increases with longer curing times, and eventually it will stabilize; and (2) compared with the Duncan–Chang model not considering thixotropy, the established thixotropic model is better able to reflect the influence of clay thixotropy on the clay stress–strain relationship, as its mean relative error is smaller. The results of this study provide references for calculating strength and deformation of the clay thixotropy. Further, it also provides references for bearing load calculations of pile foundations in thixotropic clay strata when subjected to long-term loading conditions.

Suggested Citation

  • Bin Tang & Tianli Liu & Biaohe Zhou, 2022. "Duncan–Chang E - υ Model Considering the Thixotropy of Clay in the Zhanjiang Formation," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12258-:d:926562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12258/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12258-:d:926562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.